Market Arbitrage:
European and North American Natural Gas Prices

Stephen Brown
Independent Economist
Mine Yücel
Federal Reserve Bank of Dallas
Henry Hub and NBP Prices
Henry Hub and WTI Prices
NBP and Brent Prices
Does LNG facilitate arbitrage across the Atlantic?

- Movements of natural gas prices in Europe and North America are linked to each other
- Movements of natural gas prices on both sides of the Atlantic are linked to those for crude oil
- Our econometric tests: is co-movement of natural gas prices is mediated through crude oil prices?
The Data

- **Weekly data**: June 13, 1997 - May 9, 2008
- **Natural Gas**: Henry Hub (United States) and National Balancing Point (United Kingdom)
- **Crude Oil**: WTI (United States) and Brent (Northern Europe)

- All four price series are difference stationary.
- HH is cointegrated with NBP, WTI and Brent.
- NBP is cointegrated with HH, Brent and WTI.
Bivariate Causality Testing
(error-correction models)

HH ← NBP
HH ← WTI
HH ← BRENT

NBP ← HH
NBP ← WTI
NBP ← BRENT
Multivariate Causality Testing

• Henry Hub
 – WTI and NBP as explanatory variables
 – Brent and NBP as explanatory variables

• NBP
 – WTI and HH as explanatory variables
 – Brent and HH as explanatory variables
Multivariate Causality Testing

<table>
<thead>
<tr>
<th>explanatory variables</th>
<th>Significance of Joint F-tests †</th>
<th>Significance of Joint F-tests †</th>
</tr>
</thead>
<tbody>
<tr>
<td>HH lags</td>
<td>0.0533</td>
<td>0.1284</td>
</tr>
<tr>
<td>NBP lags & CI$_{HH,NBP}$</td>
<td>0.0723</td>
<td>0.1284</td>
</tr>
<tr>
<td>WTI lags & CI$_{HH,WTI}$</td>
<td>0.0207</td>
<td></td>
</tr>
<tr>
<td>Brent lags & CI$_{HH,Brent}$</td>
<td></td>
<td>0.2151</td>
</tr>
<tr>
<td>Optimal Lags</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$R^2=.07$ Adj $R^2=.04$</td>
<td>$R^2=.05$ Adj $R^2=.03$</td>
<td></td>
</tr>
<tr>
<td>Significance of Overall F-Statistic: 0.0005 †</td>
<td>Significance of Overall F-Statistic: 0.0166 †</td>
<td></td>
</tr>
</tbody>
</table>
Multivariate Causality Testing

<table>
<thead>
<tr>
<th>explanatory variables</th>
<th>Significance of Joint F-tests‡</th>
<th>Significance of Joint F-tests‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP lags</td>
<td>0.0029</td>
<td>0.0083</td>
</tr>
<tr>
<td>HH lags & CI_{HH,NBP}</td>
<td>0.7015</td>
<td>0.7009</td>
</tr>
<tr>
<td>WTI lags & CI_{NBP,WTI}</td>
<td>0.0708</td>
<td></td>
</tr>
<tr>
<td>Brent lags & CI_{NBP,Brent}</td>
<td></td>
<td>0.2430</td>
</tr>
<tr>
<td>Optimal Lags</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

\[\text{R}^2 = 0.11 \quad \text{Adj R}^2 = 0.09 \]

Significance of Overall F-Statistic: 0.0000‡

\[\text{R}^2 = 0.10 \quad \text{Adj R}^2 = 0.08 \]

Significance of Overall F-Statistic: 0.0000‡
Multivariate Causality Testing

• Henry Hub
 – with WTI in the model, NBP is marginally significant
 – with Brent in the model, NBP is insignificant

• NBP
 – with WTI in the model, HH is insignificant
 – with Brent in the model, HH is insignificant
Exogenous Variables Affecting Henry Hub

- Heating degree days
- Deviations from normal heating degree days
- Cooling degree days
- Deviations from normal cooling degree days
- U.S. natural gas storage
- Shut-in production in the Gulf of Mexico.
Multivariate Causality Testing with exogenous variables

<table>
<thead>
<tr>
<th>explanatory variables</th>
<th>Dependent Variable</th>
<th>HH</th>
<th>NBP</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP lags</td>
<td></td>
<td></td>
<td>0.0653</td>
</tr>
<tr>
<td>HH lags</td>
<td></td>
<td>0.1597</td>
<td></td>
</tr>
<tr>
<td>HH lags & CI_{HH,NBP}</td>
<td></td>
<td></td>
<td>0.3158</td>
</tr>
<tr>
<td>NBP lags & CI_{HH,NBP}</td>
<td></td>
<td>0.1597</td>
<td></td>
</tr>
<tr>
<td>WTI lags & CI_{HH,WTI}</td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>WTI lags & CI_{NBP,WTI}</td>
<td></td>
<td></td>
<td>0.0376</td>
</tr>
<tr>
<td>Exogenous Variables</td>
<td></td>
<td>0.0000</td>
<td>0.0564</td>
</tr>
<tr>
<td>Exogenous Variables, HH lags & CI_{HH,NBP}</td>
<td></td>
<td>0.1450</td>
<td></td>
</tr>
<tr>
<td>Optimal Lags</td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

R^2 = .18 Adj R^2 = .15 Significance of Overall F-Statistic: 0.0000⁷
R^2 = .13 Adj R^2 = .10 Significance of Overall F-Statistic: 0.0000⁷
Multivariate Causality Testing with exogenous variables

• Henry Hub
 – With WTI and the exogenous variables in the model, NBP is insignificant

• NBP
 – With WTI and the exogenous variables in the model, HH is insignificant
Conclusions

• Bivariate testing shows coordinated movement of HH and NBP

• Natural gas prices on both sides of the Atlantic adjust to crude oil prices in an error-correction process

• Multivariate testing shows coordinated movement of HH and NBP may be mediated through crude oil prices

• The extensive pricing of LNG against crude oil in Europe could statistically reinforce the relationship between crude oil and natural gas prices