Water intensity of electricity from geothermal resources

Gouri Shankar Mishra (gouri.mishra@gmail.com)
William Glassley (geobg@nf.au.dk)
Sonia Yeh (slyeh@ucdavis.edu)

29th USAEE / IAEE North American Conference, Calgary
October 15, 2010
Water intensity of electricity from geothermal resources

The presentation summarizes results of the model “Analysis of lifecycle water requirements of energy and transportation fuels: electricity from geothermal resources – Version 1.0”.

The model and its description are available at http://pubs.its.ucdavis.edu/publication_detail.php?id=1425
OBJECTIVE (1/2): What are the water requirements of electricity from geothermal resources?

- **Freshwater**
 - Power plant cooling

- **Degraded water**
 - Injection to maintain pressure of hydrothermal resources
 - Injection for heat mining of EGS resources

- **Geothermal fluid**
 - Withdrawal for power generation
 - Steam condensate used for power plant (flash) cooling
OBJECTIVE (1/2): How do water requirements depend upon resource type and power plant technologies?

- **Resource type**
 - Hydrothermal – Wet steam and hot water
 - Enhanced geothermal systems (EGS)

- **Energy conversion technology**
 - Organic Rankine Cycle (ORC) or Binary
 - Flash (Single flash only)

- **Cooling technology**
 - Dry cooling / Air cooled condensers
 - Wet re-circulating (with or without ZLD)
 - Hybrid
FUNCTIONAL UNIT: Water intensity expressed for both for electricity as well as transportation end user

- **Geothermal field** → **Power generation unit** → **Transmission & Distribution** → **End user**

Electricity End User
1. **Unit**: Liters / kWh
2. Compare with electricity from other sources – renewable and fossil fuels

Transportation End User
1. **Unit**: Liters / Vehicle kilometer traveled (VKT)
2. Compare with other transportation fuels like gasoline, ethanol, etc.
3. Compare with electricity from other sources – renewable and fossil fuels
4. **Additional factors considered**: (i) Vehicle efficiency (ii) Battery charger efficiency and battery efficiency
RESULTS: Impact of resource enthalpy on intensity of water requirements (1/2): Energy conversion using ORC

Assumptions (1) ORC with IHE (recuperated cycle) (2) Wet Re-circulating cooling system
RESULTS: Impact of resource enthalpy on intensity of water requirements (2/2): Energy conversion using Flash

Assumptions (1) Single flash (2) Wet Re-circulating cooling system
RESULTS: Impact of energy conversion technology on water requirements (EGS resources and ORC plants)

Assumptions (I) Inlet fluid temperature is 150°C
RESULTS: Impact of cooling technology on water requirements (EGS resources and ORC plants)

Assumptions (1) ORC with IHE (2) Inlet fluid temperature is 150°C

Hybrid 2: Hybrid cooling system with target condenser pressure of 8.47 KPa. Annual water consumption is 13% of that of a wet cooling system.

Hybrid 4: Hybrid cooling system with target condenser pressure of 27.09 KPa. Annual water consumption is less than 0.1% of that of a wet cooling system.
RESULTS: ORC Cycle versus Flash

Water requirements for two different conversion systems

Assumptions (1) Wet Re-circulating system (2) EGS resource
RESULTS: Comparison with other power plants (water consumption intensity)

1. Wet re-circulating cooling towers assumed for all power plants
2. Requirements of geothermal fluid not shown.
3. Source: DOE 2006
5. Includes H2O for coal mining & beneficiation of 0.113 L/kWh and H2O for Uranium mining and enrichment of 3.02 L/kWh (King & Webber 2008)
Comparison with other power plants (water withdrawal intensity)

1. Wet re-circulating cooling towers assumed for all power plants
2. Requirements of geothermal fluid not shown.
3. Source: DOE 2006. Withdrawal numbers calculated based on 8 cycles of concentration and 0.075L/kWh of mirror washing requirements (DOE 2006)
5. Includes H20 for coal mining & beneficiation of 0.113 L/kWh and H20 for Uranium mining and enrichment of 3.02 L/kWh (King & Webber 2008)
IMPLICATION: What is the impact on state-wide water demand if geothermal electricity displaces thermoelectricity generated within that state? (1/2)

How much (WR-cooled) thermoelectricity is displaced?

Assumptions:
1. Wet re-circulating cooling system for both thermoelectricity and EGS electricity
2. Resource base estimates from MIT study (Tester et al 2006),
3. Recoverable fraction of thermal energy from reservoir: 2%
4. Drilling depth: 5 km
5. Fraction of available power that is economically viable: 5%
6. ORC+IHE for resource temperature less than equal to 200°C; and Flash for greater than 200°C
IMPLICATION: What is the impact on state-wide water demand if geothermal electricity displaces thermoelectricity generated within that state? (2/2)

How much additional water is required by the state’s thermoelectricity sector?

- Arizona: % increase in withdrawal of degraded & fresh H2O: 40%
- California: % increase in withdrawal of fresh H2O: 20%
- New Mexico: % increase in overall non-irrigation fresh H2O withdrawal requirements: 8.8%
- Nevada: % increase in overall non-irrigation fresh H2O withdrawal requirements: 9.6%
- California: % increase in withdrawal of degraded & fresh H2O: 3.0%
- Nevada: % increase in withdrawal of degraded & fresh H2O: 230%
Questions?
Additional slides –

Framework used for analysis of different resource and power plant types
Resource type: Hydrothermal
Power Plant type: ORC plant

Figure 2.1: Water required for cooling

- Cooling tower – Wet re-circulating and Hybrid
 - Evaporation (F)
 - Blow down (F)
 - Make-up water (F)

- Dry cooling system – Water augmented (sprayed)
 - Make-up water (F)

Figure 2.2: Water required for heat mining of geothermal resource

- ORC Power Plant
 - Fluid Injection (G)
 - Fluid Extraction (G)

- Geothermal Resource

Legend
- Withdrawal
- Consumptive use
- Degradative use
- (F) : Freshwater water
- (D) : Degraded water
- (G) : Geothermal fluid
Resource type: EGS
Power Plant type: ORC plant

Figure 3.1: Water required for cooling

Evaporation (F)

Cooling tower – Wet recirculating and Hybrid

Blow down (F)

Make-up water (F)

Figure 3.2: Water required for heat mining of geothermal resource

ORC Power Plant

Fluid Extraction (G)

Geothermal Resource

Fluid Losses (D)

Fluid injection (G)

Degraded water injection (D)

Legend
- Withdrawal
- Consumptive use
- Degradative use
(F) : Freshwater water
(D) : Degraded water
(G) : Geothermal fluid
Resource type: Hydrothermal
Power Plant type: Flash

Figure 4.1: Water required for cooling

- Evaporation (G)(F)
- Cooling tower – Wet recirculating
- Blow down (G)
- Make-up – Steam Condensate (G)
- Make-up (Summer) – Freshwater (F)

Figure 4.2: Water required for heat mining of geothermal resource

- Flash Power Plant
- Geothermal Resource
- Fluid Extraction (G)
- Fluid injection (G)
- Degraded water Injection (D)

Legend
- Withdrawal
- Consumptive use
- Degradative use
- (F) : Freshwater water
- (D) : Degraded water
- (G) : Geothermal fluid
Resource type: EGS
Power Plant type: Flash

Figure 5.1: Water required for cooling

- Evaporation (G)(F)
- Make-up – Steam Condensate (G)
- Make-up (Summer) – Freshwater (F)
- Cooling tower – Wet recirculating
- Blow down (G)

Figure 5.2: Water required for heat mining of geothermal resource

Legend
- Withdrawal
- Consumptive use
- Degradative use
(F) : Freshwater water
(D) : Degraded water
(G) : Geothermal fluid