The Economics of the South Stream Pipeline in the Context of Russo-Ukrainian Gas Bargaining

Chi-Kong Chyong

Judge Business School & Electricity Policy Research Group
University of Cambridge

30th USAEE/IAEE North American Conference – 11 October 2011

Thanks to ESRC (UK) and NearCO2 (EU) for funding
I. The context

II. The South Stream System

III. South Stream Cost

IV. South Stream Value

V. South Stream and Ukraine’s transit profits

VI. Conclusions
The context

• EU-Russia gas trade is important for

 – Russia:
 • Gas exports generate 4.5% of Russian GDP or half of Gazprom's revenue
 • Tax receipts from gas exports amount to 30% of Russia's defence budget

 – and for Europe:
 • 25% of European consumption is covered by Russian gas
The context (2)

The EU-Russia gas trade is highly dependent on Ukraine.
The context (3)

- Several transit disruptions through Ukraine since the fall of the USSR raised concerns about its reliability...

...and what is worse, Europe has been a collateral victim of these bilateral gas disputes.
The context (4)

Gazprom’s solution: Export route diversification strategy since early 1990s
Research question

• Given that Nord Stream is under construction

Will South Stream be built?
Contents

I. The context

II. The South Stream System

III. South Stream Cost

IV. South Stream Value

V. South Stream and Ukraine’s transit profits

VI. Conclusions
The South Stream system

- Off-shore pipeline under the Black Sea (A-B):
 Total Capacity: 63 bcm;
 Length: ~900 km

- Northern route:
 1. Bulgaria-Serbia (B-F): ~960 km
 2. Serbia-Hungary (F-G): ~530 km
 3. Hungary-Slovenia (G-H): ~610 km
 4. Hungary-Austria (G-J): ~350 km
 5. Slovenia-Austria (H-I): ~220 km

- Southern route:
 1. Bulgaria-Greece (B-C): ~416 km
 2. Greece (C-D): ~690 km
 3. Greece-Italy (D-E): ~200 km

- Cost estimates:
 - Gazprom (2010): €15.5 Bn
The South Stream System in Russia

- South Stream would begin at Pochinki

- From Pochinki to Beregovaya (South Stream offshore):
 1. Existing lines ~ 32 bcm;
 2. A new pipeline from Pochinki to Beregovaya ~ 32 bcm

- Possible gas sources:
 1. Fields in operation: Nadym-Pur-Taz (NPT) region
 2. Yamal Peninsula (Gryazovets-Pochinki bi-directional pipeline ~ 36 bcm)
 3. Central Asia

- Total anticipated pipeline expansion in Russia ~2200 km

Source: adapted from eegas.com
Contents

I. The context

II. The South Stream System

III. South Stream Cost

IV. South Stream Value

V. South Stream and Ukraine’s transit profits

VI. Conclusions
South Stream Construction Cost

- Cost of onshore pipelines:
 - Based on engineering model (WB, 2010)

- Cost of offshore pipelines:
 - Based on econometric estimation

- Project-related uncertainties:
 - Monte-Carlo simulation with key assumptions
Transporting gas to Germany and Italy

- On average, it is cheaper to use the Ukrainian route to export gas to Germany and Italy
- Transporting gas from Azerbaijan is cheaper through South Stream
Transporting gas to Southern Europe

US$/tcm

South Stream
Ukrainian route
Fields in operation (NPT)

Yamal Peninsula
Turkmenistan

Azerbaijan

BG - Bulgaria
TK - Turkey
GR - Greece
RS - Serbia
Contents

I. The context

II. The South Stream System

III. South Stream Cost

IV. South Stream Value

V. South Stream and Ukraine’s transit profits

VI. Conclusions
Deriving South Stream value

- **South Stream value** = changes in Gazprom’s profit when South Stream is built versus when it is not built.

- A computational, strategic gas market model (Chyong & Hobbs, 2011) is used to calculate the South Stream value under:
 1. Different demand scenarios, and
 2. Different values of transit fees through Ukraine

- Major assumptions:
 1. Nord Stream is built by 2013 (55 bcm)
 2. Ukraine’s transit fee is fixed exogenously

Demand Scenarios: 2011-2030

<table>
<thead>
<tr>
<th>Region</th>
<th>Low Demand case</th>
<th>Base case</th>
<th>High Demand case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western and Southern Europe</td>
<td>-0.2%</td>
<td>+0.7%</td>
<td>+1.9%</td>
</tr>
<tr>
<td>Central and Eastern Europe</td>
<td>-0.2%</td>
<td>+0.8%</td>
<td>+1.9%</td>
</tr>
<tr>
<td>Balkan Countries</td>
<td>-0.2%</td>
<td>+0.8%</td>
<td>+1.9%</td>
</tr>
</tbody>
</table>

Source: Base and Low Demand cases - IEA (2009)
High Demand case - IEA (2000-2007)

<table>
<thead>
<tr>
<th>Short-run transit cost</th>
<th>Current transit fee</th>
<th>High transit fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>2.07</td>
<td>5.11</td>
</tr>
</tbody>
</table>

Transit fees through Ukraine ($/tcm/100km)
South Stream Value

US$ Bn (NPV)

Low Demand Case Base Case High Demand Case

Average 90% Conf. interval

- Short-run transit cost
- Current transit fee
- High transit fee
Contents

I. The context

II. The South Stream System

III. South Stream Cost

IV. South Stream Value

V. South Stream and Ukraine’s transit profits

VI. Conclusions
Ukraine’s transit profits
Ukraine’s net benefit of not raising the transit fee over 30 years

An impatient Ukraine would raise its transit fee, triggering the construction of South Stream

Source: (Vitrenko, 2008; Kovalko&Vitrenko, 2009)
Conclusions

• The value of South Stream investment is only positive when:
 – Gas demand in Europe is expected to be very high (+1.9% p.a.), or
 – When Ukraine raises its transit fee considerably

• Naftogaz’s corporate governance issues make its discount rate very high, which explains its willingness to bargain with Russia

• If Ukraine bargains to raise its transit fee sufficiently high, then South Stream would be built leading to the undesirable longer-term outcome of being completely bypassed by Gazprom

• To avoid this outcome, Ukraine would need to find ways to reduce the very high discount rate of Naftogaz, perhaps via restructuring and privatization
THANK YOU!