Productivity growth in electric energy retail in Colombia.
A bootstrapped Malmquist indices approach

Rodrigo Taborda Julieth Santamaría

Facultad de Economía
Universidad del Rosario - Bogotá, COL

USAEE - IAEE
Oct 9-12, 2011. Washington
Colombia’s electric energy industry was split into four activities early in the 90s: generation, transmission, retail and distribution.

Transmission and distribution have kept their natural monopoly character, while competence is allowed in generation and retail.

The regulatory scheme for retail follows the price-cap (IPC - X) formula (where X is the productivity growth factor).

Therefore a proper productivity estimation is important.
Summary

- Colombia’s electric energy industry was split into four activities early in the 90s: generation, transmission, retail and distribution.
- Transmission and distribution have kept their natural monopoly character, while competence is allowed in generation and retail.
- The regulatory scheme for retail follows the price-cap (IPC - \(X \)) formula (where \(X \) is the productivity growth factor).
- Therefore a proper productivity estimation is important.
Colombia’s electric energy industry was split into four activities early in the 90s: generation, transmission, retail and distribution.

Transmission and distribution have kept their natural monopoly character, while competence is allowed in generation and retail.

The regulatory scheme for retail follows the price-cap (IPC - X) formula (where X is the productivity growth factor).

Therefore a proper productivity estimation is important.
Summary

- Colombia’s electric energy industry was split into four activities early in the 90s: generation, transmission, retail and distribution.
- Transmission and distribution have kept their natural monopoly character, while competence is allowed in generation and retail.
- The regulatory scheme for retail follows the *price-cap* (IPC - \(X\)) formula (where \(X\) is the productivity growth factor).
- Therefore a proper productivity estimation is important.
Summary

There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:
- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory)

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:

- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
Summary

There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:

- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
Summary

- There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

- DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:
 - Allow several inputs-outputs
 - Ease of understanding
 - Direct identification of highly efficient/productive production units
 - Theoretical soundness (microeconomics and producer theory).

- However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

- This is where bootstrapping DEA and Malmquist indices comes.
Summary

There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:

- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
Summary

There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:
- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:
- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
There are several options for productivity estimation: index numbers, econometric and Data Envelopment Analysis (DEA) - Malmquist.

DEA has drawn attraction into productivity estimation for regulatory purposes thanks to:
- Allow several inputs-outputs
- Ease of understanding
- Direct identification of highly efficient/productive production units
- Theoretical soundness (microeconomics and producer theory).

However, standard DEA lacks statistical properties to assess efficiency and productivity measures. Particularly questionable with few observations or data collection problems.

This is where bootstrapping DEA and Malmquist indices comes.
DEA efficiency

\[\partial \hat{X}(y) \]

\[\hat{\delta}(x_f, y) \]

\[\hat{\delta}(x_g, y) \]

\[\hat{x}_g(y) \]

\[\delta(x_f, y) \]

\[\delta(x_g, y) \]

\[x_1 \]

\[x_2 \]
DEA efficiency in $t + 1$
Productivity

\[x_2 \]

\[\partial \hat{X}(y) \]

\[\partial \hat{X}(y)_+ \]

\[f \]

\[a_{+1} \]

\[\hat{\delta}(x_f, y) \]

\[b \]

\[b_{+1} \]

\[\hat{x}_g(y) \]

\[c \]

\[c_{+1} \]

\[\hat{\delta}(x_g, y) \]

\[d \]

\[d_{+1} \]

\[\hat{\delta}(x_g, y) \]

\[e \]

\[e_{+1} \]
Productivity

\[M_i(t_1, t_2) = \frac{\delta_{t_2}^{t_1} | t_2}{\delta_{t_1}^{t_2} | t_1} \times \left(\frac{\delta_{t_2}^{t_1} | t_1}{\delta_{t_2}^{t_1} | t_2} \times \frac{\delta_{t_1}^{t_1} | t_1}{\delta_{t_1}^{t_1} | t_2} \right)^{\frac{1}{2}} \]
Bootstrapping DEA

- Resampling to re-create appropriately the Data Generating Process (DGP).
- Source of variability in DEA lies on the efficiency measures. The bootstrap is performed upon a initial set of efficiency measures $\hat{\delta}$, used to regenerate a new sample of input-output data.
- A non-parametric Gaussian process is used for the random sampling with replacement.
- The b bootstrapped samples, with the appropriate aggregation rule, allows to obtain a media and confidence intervals to assess if efficiency and productivity growth is significantly different from 0 or not.
Bootstrapping DEA

- Resampling to re-create appropriately the Data Generating Process (DGP).
- Source of variability in DEA lies on the efficiency measures. The bootstrap is performed upon a initial set of efficiency measures $\hat{\delta}$, used to regenerate a new sample of input-output data.
- A non-parametric Gaussian process is used for the random sampling with replacement.
- The b bootstrapped samples, with the appropriate aggregation rule, allows to obtain a media and confidence intervals to assess if efficiency and productivity growth is significantly different from 0 or not.
Bootstrapping DEA

- Resampling to re-create appropriately the Data Generating Process (DGP).
- Source of variability in DEA lies on the efficiency measures. The bootstrap is performed upon a initial set of efficiency measures $\hat{\delta}$, used to regenerate a new sample of input-output data.
- A non-parametric Gaussian process is used for the random sampling with replacement.
- The b bootstrapped samples, with the appropriate aggregation rule, allows to obtain a media and confidence intervals to assess if efficiency and productivity growth is significantly different from 0 or not.
Bootstrapping DEA

- Resampling to re-create appropriately the Data Generating Process (DGP).
- Source of variability in DEA lies on the efficiency measures. The bootstrap is performed upon a initial set of efficiency measures \(\hat{\delta} \), used to regenerate a new sample of input-output data.
- A non-parametric Gaussian process is used for the random sampling with replacement.
- The \(b \) bootstrapped samples, with the appropriate aggregation rule, allows to obtain a media and confidence intervals to assess if efficiency and productivity growth is significantly different from 0 or not.
Data

- 18 retail firms covering geographically distinctive markets from 2005 to 2009.
- Input variables: Assets, employment and operational costs.
- Output variables: Service queries, complaints and appeals (QCA); cuentas por cobrar; No. of users; electricity consumption.
- Data obtained from public, not very accurate, database from Colombias utilities superintendency, not the energy markets regulator.
- Focus on malmquist productivity change, efficiency change and technical change.

\[
\Delta M_{i}(t_{1}, t_{2}) = \delta_{i}^{t_{2}|t_{1}} \times \left(\delta_{i}^{t_{1}|t_{2}} \delta_{i}^{t_{2}|t_{1}} \right)^{1/2}
\]

\(\Delta M\): Malmquist - TFP

\(\Delta \text{ Efficiency}\): Efficiency change

\(\Delta \text{ Technology}\): Technical change
18 retail firms covering geographically distinctive markets from 2005 to 2009.

Input variables: Assets, employment and operational costs.

Output variables: Service queries, complaints and appeals (QCA); cuentas por cobrar; No. of users; electricity consumption.

Data obtained from public, not very accurate, database from Colombias utilities superintendency, not the energy markets regulator.

Focus on malmquist productivity change, efficiency change and technical change.

\[
M_i(t_1, t_2) = \delta_{i}^{t_2|t_2} \times \left(\frac{\delta_{i}^{t_1|t_1}}{\delta_{i}^{t_2|t_2}} \times \left(\frac{\delta_{i}^{t_1|t_1}}{\delta_{i}^{t_2|t_2}} \right) \right)^{\frac{1}{2}}
\]
18 retail firms covering geographically distinctive markets from 2005 to 2009.

- Input variables: Assets, employment and operational costs.
- Output variables: Service queries, complaints and appeals (QCA); cuentas por cobrar; No. of users; electricity consumption.

- Data obtained from public, not very accurate, database from Colombias utilities superintendency, not the energy markets regulator.
- Focus on malmquist productivity change, efficiency change and technical change.

$$
\Delta M_{i}(t_1, t_2) = \delta_{i}^{t_2|t_1} \times \left(\frac{\delta_{i}^{t_2|t_1}}{\delta_{i}^{t_2|t_2}} \times \frac{\delta_{i}^{t_1|t_1}}{\delta_{i}^{t_1|t_2}} \right)^{1/2}
$$

- Δ Malmquist - TFP
- Δ Efficiency
- Δ Technology
Data

- 18 retail firms covering geographically distinctive markets from 2005 to 2009.
- Input variables: Assets, employment and operational costs.
- Output variables: Service queries, complaints and appeals (QCA); cuentas por cobrar; No. of users; electricity consumption.
- Data obtained from public, not very accurate, database from Colombia's utilities superintendency, not the energy markets regulator.
- Focus on malmquist productivity change, efficiency change and technical change.

\[\Delta M_{i}(t_1, t_2) = \delta_{t_2|t_1}^{t_2} \times \left(\delta_{t_1|t_1}^{t_2} \times \delta_{t_1|t_1}^{t_1} \right)^{\frac{1}{2}} \]
Data

- 18 retail firms covering geographically distinctive markets from 2005 to 2009.
- Input variables: Assets, employment and operational costs.
- Output variables: Service queries, complaints and appeals (QCA); cuentas por cobrar; No. of users; electricity consumption.
- Data obtained from public, not very accurate, database from Colombias utilities superintendency, not the energy markets regulator.
- Focus on malmquist productivity change, efficiency change and technical change.

\[
\Delta M_i(t_1,t_2) = \frac{\delta_{i}^{t_2|t_2}}{\delta_{i}^{t_1|t_1}} \times \left(\frac{\delta_{i}^{t_2|t_1}}{\delta_{i}^{t_1|t_2}} \times \frac{\delta_{i}^{t_1|t_1}}{\delta_{i}^{t_1|t_2}} \right)^{\frac{1}{2}}
\]
3,000 repetitions.

High variance and inability to determine any productivity, efficiency or technology change.
3,000 repetitions.

High variance and inability to determine any productivity, efficiency or technology change.
Efficiency growth
Efficiency growth + CI

Year

Efficiency index

CI
Malmquist productivity

Year
Malmquist productivity + CI

Year

- Malmquist index
- CI
An industry aggregate figure is what the regulator needs.

Cuadro 1. Malmquist, efficiency and technical change (mean and median)

<table>
<thead>
<tr>
<th>Year</th>
<th>Malmquist</th>
<th>Efficiency</th>
<th>Technology</th>
<th>Malmquist</th>
<th>Efficiency</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Mean</td>
<td>Median</td>
<td>Median</td>
<td>Median</td>
</tr>
<tr>
<td>2006</td>
<td>1.0258</td>
<td>1.0056</td>
<td>1.0466</td>
<td>1.0001</td>
<td>1.0046</td>
<td>1.0051</td>
</tr>
<tr>
<td>2007</td>
<td>1.1138</td>
<td>0.9498</td>
<td>1.2168</td>
<td>1.1301</td>
<td>0.9084</td>
<td>1.2351</td>
</tr>
<tr>
<td>2008</td>
<td>1.0605</td>
<td>1.1443</td>
<td>0.9526</td>
<td>0.9998</td>
<td>1.155</td>
<td>0.9385</td>
</tr>
<tr>
<td>2009</td>
<td>1.0329</td>
<td>1.3165</td>
<td>0.8606</td>
<td>1.0325</td>
<td>1.1501</td>
<td>0.8625</td>
</tr>
</tbody>
</table>
Box plot bootstrapped Malmquist productivity
Conclusion

- A measurement of performance and productivity is basic for incentive regulation.
- Malmquist indices from DEA is a good option, the bootstrap methodology can inform us of how far are we from a significant change.
- Such assessment of the measurement is a lot more helpful than a single estimate.
- For the case of Colombia, no change can be attributed to productivity.
- Energy retail firm’s productivity is not widely known and this estimation can help to set a starting point.
Conclusion

- A measurement of performance and productivity is basic for incentive regulation.
- Malmquist indices from DEA is a good option, the bootstrap methodology can inform us of how far are we from a significant change.
- Such assessment of the measurement is a lot more helpful than a single estimate.
- For the case of Colombia, no change can be attributed to productivity.
- Energy retail firm’s productivity is not widely known and this estimation can help to set a starting point.
Conclusion

- A measurement of performance and productivity is basic for incentive regulation.
- Malmquist indices from DEA is a good option, the bootstrap methodology can inform us of how far are we from a significant change.
- Such assessment of the measurement is a lot more helpful than a single estimate.
- For the case of Colombia, no change can be attributed to productivity.
- Energy retail firm’s productivity is not widely known and this estimation can help to set a starting point.
Conclusion

- A measurement of performance and productivity is basic for incentive regulation.
- Malmquist indices from DEA is a good option, the bootstrap methodology can inform us of how far are we from a significant change.
- Such assessment of the measurement is a lot more helpful than a single estimate.
- For the case of Colombia, no change can be attributed to productivity.
- Energy retail firm’s productivity is not widely known and this estimation can help to set a starting point.
Conclusion

- A measurement of performance and productivity is basic for incentive regulation.
- Malmquist indices from DEA is a good option, the bootstrap methodology can inform us of how far are we from a significant change.
- Such assessment of the measurement is a lot more helpful than a single estimate.
- For the case of Colombia, no change can be attributed to productivity.
- Energy retail firm’s productivity is not widely known and this estimation can help to set a starting point.
Siglas

DEA Data Envelopment Analysis
DGP Data Generating Process