Induced R&D in Automobiles: A Preliminary Study

Thummim Cho

Korea Military Academy & Harvard University

31st USAEE/IAEE North American Conference
Outline

1 Regulations in the Automobile Industry and the Induced Innovation Hypothesis
 - A Brief History of Automobile Regulations
 - The Induced Innovation Hypothesis

2 Did Automobile R&D Respond to Regulations and Gasoline Price?
 - Automobile R&D
 - Evidence of Induced R&D?

3 Conclusion
Outline

1 Regulations in the Automobile Industry and the Induced Innovation Hypothesis
 - A Brief History of Automobile Regulations
 - The Induced Innovation Hypothesis

2 Did Automobile R&D Respond to Regulations and Gasoline Price?
 - Automobile R&D
 - Evidence of Induced R&D?

3 Conclusion
A Brief History of Automobile Regulations

Figure: US energy prices and major policy actions 1970-2011. Data come from the World Bank, the Bureau of Labor Statistics, and the US Energy Information Administration (EIA), and the Bureau of Labor Statistics. Policy information is taken from a similar figure published online by EIA under the title “Petroleum Chronology Graph”.

- **1973:** Emergency Petroleum Allocation Act (EPAA)
- **1975:** Energy Policy & Conservation Act (EPCA)
- **1978:** CAFE Standards implemented under EPCA
- **1990:** Clean Air Act Amendments (CAAA)
- **1994-1997:** Tier 1 emission standards under CAAA phased-in
- **2007:** Energy Independence and Security Act
- **2004-2009:** Tier 2 emission standards under CAAA phased-in
Induced Innovation in Short

Figure: Sir John R. Hicks
Induced Innovation in Short

- **Sir John Hicks**: “a change in the relative prices of the factors of production is itself a spur to invention . . . directed to economizing the use of a factor which has become relatively expensive” (Hicks 1932, p.124).

- The hypothesis formalized as a theory: a change in factor prices of production function leads to cost-saving innovation through changes in R&D incentive of firms (Ahmad 1966, Kaimen and Schwartz 1968, and Binswanger 1978).

- The hypothesis applied to energy price and regulations: higher price of energy (or pollution) induces innovation in the energy-saving (or pollution-reducing) technologies (e.g., Newell et al. 1999).
Induced Innovation in Short

- **Sir John Hicks**: “a change in the relative prices of the factors of production is itself a spur to invention . . . directed to economizing the use of a factor which has become relatively expensive” (Hicks 1932, p.124).

- **The hypothesis formalized as a theory**: a change in factor prices of production function leads to cost-saving innovation through changes in R&D incentive of firms (Ahmad 1966, Kaimen and Schwartz 1968, and Binswanger 1978).

- **The hypothesis applied to energy price and regulations**: higher price of energy (or pollution) induces innovation in the energy-saving (or pollution-reducing) technologies (e.g., Newell et al. 1999).
Sir John Hicks: “a change in the relative prices of the factors of production is itself a spur to invention . . . directed to economizing the use of a factor which has become relatively expensive” (Hicks 1932, p.124).

The hypothesis formalized as a theory: a change in factor prices of production function leads to cost-saving innovation through changes in R&D incentive of firms (Ahmad 1966, Kaimen and Schwartz 1968, and Binswanger 1978).

The hypothesis applied to energy price and regulations: higher price of energy (or pollution) induces innovation in the energy-saving (or pollution-reducing) technologies (e.g., Newell et al. 1999)
Induced Innovation in Automobiles

- Induced innovation in automobiles is an important topic because of the industry’s economic and environmental significance.
- But papers have generated different answers (e.g., Greene 1990, Berry et al. 1996, Popp 2002 vs. Crabb and Johnson 2010).
- A difficulty: innovation output combines the impact of both private and public R&D → I study innovation input measured by private R&D

<table>
<thead>
<tr>
<th>Year</th>
<th>Research and Development Funds</th>
<th>Domestic Sales</th>
<th>R&D Scientists and Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Federal</td>
<td>Company</td>
</tr>
<tr>
<td>1970</td>
<td>6.8</td>
<td>38</td>
<td>4.3</td>
</tr>
<tr>
<td>1998</td>
<td>29.3</td>
<td>17</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Other years are omitted for space

Table: Private and federal R&D in transportation manufacturing. The statistics come from the National Science Foundation’s “Summary data for R&D-performing companies, by detailed industry and by size of company: 1969–98.” The column title “Ind” denotes the transportation industry total (SIC code 37).
Induced Innovation in Automobiles

- Induced innovation in automobiles is an important topic because of the industry's economic and environmental significance.

- But papers have generated different answers (e.g., Greene 1990, Berry et al. 1996, Popp 2002 vs. Crabb and Johnson 2010).

- A difficulty: innovation output combines the impact of both private and public R&D → I study innovation input measured by private R&D

<table>
<thead>
<tr>
<th>Year</th>
<th>Research and Development Funds</th>
<th>Domestic Sales</th>
<th>R&D Scientists and Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Federal</td>
<td>Company</td>
</tr>
<tr>
<td>1970</td>
<td>6.8</td>
<td>38</td>
<td>4.3</td>
</tr>
<tr>
<td>1998</td>
<td>29.3</td>
<td>17</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Table: Private and federal R&D in transportation manufacturing. The statistics come from the National Science Foundation’s “Summary data for R&D-performing companies, by detailed industry and by size of company: 1969–98.” The column title “Ind” denotes the transportation industry total (SIC code 37).
Induced Innovation in Automobiles

- Induced innovation in automobiles is an important topic because of the industry’s economic and environmental significance.

- But papers have generated different answers (e.g., Greene 1990, Berry et al. 1996, Popp 2002 vs. Crabb and Johnson 2010).

- A difficulty: **innovation output** combines the impact of both private and public R&D → I study **innovation input** measured by private R&D

<table>
<thead>
<tr>
<th>Year</th>
<th>Research and Development Funds</th>
<th>Domestic Sales</th>
<th>R&D Scientists and Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Federal</td>
<td>Company</td>
</tr>
<tr>
<td>1970</td>
<td>6.8</td>
<td>4.3</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>4.3</td>
<td>36</td>
</tr>
<tr>
<td>1998</td>
<td>29.3</td>
<td>10.3</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Private and federal R&D in transportation manufacturing. The statistics come from the National Science Foundation’s “Summary data for R&D-performing companies, by detailed industry and by size of company: 1969–98.” The column title “Ind” denotes the transportation industry total (SIC code 37).
Induced Innovation in Automobiles

- Induced innovation in automobiles is an important topic because of the industry’s economic and environmental significance.
- But papers have generated different answers (e.g., Greene 1990, Berry et al. 1996, Popp 2002 vs. Crabb and Johnson 2010).
- A difficulty: innovation output combines the impact of both private and public R&D → I study innovation input measured by private R&D

<table>
<thead>
<tr>
<th>Year</th>
<th>Research and Development Funds</th>
<th>Domestic Sales</th>
<th>R&D Scientists and Engineers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Federal</td>
<td>Company</td>
</tr>
<tr>
<td>1970</td>
<td>6.8</td>
<td>38</td>
<td>4.3</td>
</tr>
<tr>
<td>1998</td>
<td>29.3</td>
<td>17</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Other years are omitted for space

Table: Private and federal R&D in transportation manufacturing. The statistics come from the National Science Foundation’s “Summary data for R&D-performing companies, by detailed industry and by size of company: 1969–98.” The column title “Ind” denotes the transportation industry total (SIC code 37).
Outline

1 Regulations in the Automobile Industry and the Induced Innovation Hypothesis
 - A Brief History of Automobile Regulations
 - The Induced Innovation Hypothesis

2 Did Automobile R&D Respond to Regulations and Gasoline Price?
 - Automobile R&D
 - Evidence of Induced R&D?

3 Conclusion
Figure: R&D Expenditure by Top Automobile Sellers, 1970-2011 (in Millions of 2011 US Dollars). R&D expenditure data come from CRSP-Compustat Merged Data and CPI data come from the Bureau of Labor Statistics.
A Reduced-Form Model

- Use previous studies on R&D to partial out the usual determinants of R&D → e.g., revenue, debt-to-assets, market-to-book

\[
\ln (R&D_{i,t}) = \beta_0 + \beta_1 \ln (\text{control 1}) + \ldots + \beta_N \ln (\text{control N}) + \beta_{N+1} q_t + \alpha p_t + k_i + u_{i,t}
\]

- \(q_t \) denotes the vector of time effects other than policy or price effects
- \(p_t \) denotes the vector of policy dummies and energy prices
- \(k_i \) denotes the firm fixed effects and \(u_{i,t} \) denotes the residual effects

- Run LSDV estimation to see how the unexplained part of R&D is correlated with a policy introduction or energy price variation
A Reduced-Form Model

- Use previous studies on R&D to partial out the usual determinants of R&D \(\rightarrow \) e.g., revenue, debt-to-assets, market-to-book

\[
\ln (R&D_{i,t}) = \\
\beta_0 + \beta_1 \ln (\text{control 1}) + \ldots + \beta_N \ln (\text{control N}) + \beta_{N+1} q_t + \alpha p_t + k_i + u_{i,t}
\]

- \(q_t \) denotes the vector of time effects other than policy or price effects
- \(p_t \) denotes the vector of policy dummies and energy prices
- \(k_i \) denotes the firm fixed effects and \(u_{i,t} \) denotes the residual effects

- Run LSDV estimation to see how the unexplained part of R&D is correlated with a policy introduction or energy price variation
A Reduced-Form Model

- Use previous studies on R&D to partial out the usual determinants of R&D → e.g., revenue, debt-to-assets, market-to-book

\[\ln (R&D_{i,t}) = \beta_0 + \beta_1 \ln (\text{control 1}) + \ldots + \beta_N \ln (\text{control N}) + \beta_{N+1} q_t + \alpha p_t + k_i + u_{i,t} \]

- \(q_t \) denotes the vector of time effects other than policy or price effects
- \(p_t \) denotes the vector of policy dummies and energy prices
- \(k_i \) denotes the firm fixed effects and \(u_{i,t} \) denotes the residual effects

- Run LSDV estimation to see how the unexplained part of R&D is correlated with a policy introduction or energy price variation
Figure: Comparison of EIA, AR(1), and ARIMA(1,1,0) projections. All are reported in 2011 US dollars and reflect consumer prices of all grades with federal and state taxes included but local taxes excluded. The dotted lines above and below the actual price line denote the 10% deviations from the actual price. AR(1) and ARIMA(1,1,0) projections use 20 years’ window.
Policy Dummies and Energy Prices

- Energy price: weighted average of projected future gasoline prices

Figure: Comparison of EIA, AR(1), and ARIMA(1,1,0) projections. All are reported in 2011 US dollars and reflect consumer prices of all grades with federal and state taxes included but local taxes excluded. The dotted lines above and below the actual price line denote the 10% deviations from the actual price. AR(1) and ARIMA(1,1,0) projections use 20 years’ window.
Some Evidence of Induced R&D

- R&D by firms were higher when projected gasoline price high or emission standards were introduced/began.
- R&D by US firms were higher than R&D by non-US firms when CAFE standards were introduced/began.
- A dollar increase (25% increase) in gasoline tax can be associated with 14.5% increase in R&D activities.
- R&D activities by automakers increased by approximately 10-15% during the early years of emission standards’ introduction.
Some Evidence of Induced R&D

- R&D by firms were higher when projected gasoline price high or emission standards were introduced/began
- R&D by US firms were higher than R&D by non-US firms when CAFE standards were introduced/began
- A dollar increase (25% increase) in gasoline tax can be associated with 14.5% increase in R&D activities
- R&D activities by automakers increased by approximately 10-15% during the early years of emission standards’ introduction
Some Evidence of Induced R&D

- R&D by firms were higher when projected gasoline price high or emission standards were introduced/began.
- R&D by US firms were higher than R&D by non-US firms when CAFE standards were introduced/began.
- A dollar increase (25% increase) in gasoline tax can be associated with 14.5% increase in R&D activities.
- R&D activities by automakers increased by approximately 10-15% during the early years of emission standards’ introduction.
Some Evidence of Induced R&D

- R&D by firms were higher when projected gasoline price high or emission standards were introduced/began.
- R&D by US firms were higher than R&D by non-US firms when CAFE standards were introduced/began.
- A dollar increase (25% increase) in gasoline tax can be associated with 14.5% increase in R&D activities.
- R&D activities by automakers increased by approximately 10-15% during the early years of emission standards’ introduction.
Outline

1 Regulations in the Automobile Industry and the Induced Innovation Hypothesis
 - A Brief History of Automobile Regulations
 - The Induced Innovation Hypothesis

2 Did Automobile R&D Respond to Regulations and Gasoline Price?
 - Automobile R&D
 - Evidence of Induced R&D?

3 Conclusion
Conclusion

- The reduced-form approach shows some evidence of induced R&D
- Difficulty in interpreting the effects with causation
- Need to build a structural model of R&D to identify the causal effects