Do Firms Interact Strategically?
An Empirical Analysis of Investment Timing Decisions in Offshore Petroleum Production

C.-Y. Cynthia Lin
University of California at Davis
Petroleum Production

− Exploration
 ■ drilling rigs
Petroleum Production

- Exploration
 - drilling rigs

- Development
 - production platforms
Strategic considerations

- Information externality
Strategic considerations

- Information externality
- Extraction externality
Difference #1: sign

Strategic considerations

- Information externality: *positive*

- Extraction externality: *negative*
Difference #2: Geographical scope

Common geological features (information externality)
Difference #2: Geographical scope

Pool of Petroleum (extraction externality)
Difference #3: Relative importance

Large tracts: information externality
Small tracts: information and extraction externalities

Difference #3: Relative importance

Tract A Tract B
Strategic considerations

- Information externality: *positive*
- Extraction externality: *negative*

Relative importance larger on small tracts than on large tracts
Research questions

- Do firms interact strategically?

- Do the externalities have any net strategic effect that may cause petroleum production to be inefficient?
Data

- U.S. federal lease sales in the Gulf of Mexico, 1954-1990
- Maximum tract size: 3 miles by 3 miles
- Up to 23 tracts can be located over a common field
- 57% - 67% fields have more than 1 tract
- 70% - 79% fields have 3 or fewer tracts
Motivation

 Theory
 - Do strategic interactions take place in practice?

 Methodology
 - How estimate strategic interactions?

 Policy
 - Is the federal leasing program inefficient?
Methodology

- Reduced-form discrete response model of a firm’s exploration investment timing decision
 - instrument for neighbors’ decisions

- Structural econometric model of the firms’ multi-stage investment timing game
Structural model

- Multi-stage investment timing game
 - exploration
 - development

- How does a firm’s profits depend on the exploration and development decisions of its neighbor?
Investment stages

1. exploration
2. development

solve backwards
Investment stages

1. exploration

2. development

solve backwards
Stage 2: Development

When to develop an explored tract?

Value of an explored but undeveloped tract i in market k at time t is:

$$V^e(\Omega_{kt}, \epsilon_{it}; \theta) = \max\{\pi^d(\Omega_{kt}, \epsilon_{it}; \theta), \beta V^{ce}(\Omega_{kt}; \theta)\}$$

where

$$\pi^d(\Omega_{kt}, \epsilon_{it}; \theta) = \pi_0^d(\Omega_{kt}; \theta) + \epsilon_{it}$$

$$V^{ce}(\Omega_{kt}; \theta) = \mathbb{E}[V^e(\Omega_{kt+1}, \epsilon_{it+1}; \theta) \mid \Omega_{kt}, \epsilon_{it}=0]$$
Investment stages

1. Exploration

2. development

solve backwards
Stage 1: Exploration

When to explore an unexplored tract?

Value of an unexplored tract i in market k at time t is:

$$V^n(\Omega_{kt}, \mu_{it}; \theta) = \max\{\pi^e(\Omega_{kt}, \mu_{it}; \theta), \beta V^{cn}(\Omega_{kt}; \theta)\}$$

where

$$\pi^e(\Omega_{kt}, \mu_{it}; \theta) = E_{\epsilon}[V^e(\Omega_{kt}, \epsilon_{it}; \theta) \mid \Omega_{kt}] - c^e(\Omega_{kt}; \theta) + \mu_{it}$$

$$V^{cn}(\Omega_{kt}; \theta) = E[V^n(\Omega_{k,t+1}, \mu_{i,t+1}; \theta) \mid \Omega_{kt}, \epsilon_{it}=0]$$
Econometric estimation

- Step 1: Estimate continuation values & predicted exploration and development probabilities
- Step 2: Use generalized method of moments (GMM) to match predicted probabilities with the actual probabilities in data
Pooled results from structural model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>4.99</td>
<td>0.00</td>
</tr>
<tr>
<td>(\sigma_e)</td>
<td>4.86</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Coefficient \(\alpha \) in the exploration profit function on: discretized real drilling cost + 1
-10.01 0.00

Coefficients \(\gamma \) in the development profit function on:
- # tracts in market that have been explored
 0.03 0.02
- # tracts in market that have been developed
 0.16 0.02
- discretized average winning bid per acre
 5.10 0.01
- discretized real drilling cost
 -9.91 0.01
- discretized real oil price
 5.19 0.00
- constant
 5.01 0.02

Notes: There are 1041 observations spanning 87 markets. Standard errors are formed by bootstrapping 100 simulated panels of 87 markets each.
Reasons results do not support non-cooperative, strategic behavior during exploration

- Large tract size => no cross-tract externalities
- Firms cooperate to internalize externalities
- Positive information externality and negative extraction externality cancel
Strategic effects expected

<table>
<thead>
<tr>
<th></th>
<th>Large tracts</th>
<th>Small tracts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large tract size => no cross-tract externalities</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Firms cooperate to internalize externalities</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Positive information externality and negative extraction externality cancel</td>
<td>Y/N extraction externality less important</td>
<td>Y extraction externality more important</td>
</tr>
</tbody>
</table>
Results for large tracts

<table>
<thead>
<tr>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 5000</td>
</tr>
</tbody>
</table>

Coefficients γ in the development profit function on:

<table>
<thead>
<tr>
<th># tracts in market that have been explored</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(4.24)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># tracts in market that have been developed</th>
<th>-0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1.12)</td>
</tr>
</tbody>
</table>
Results for small tracts

<table>
<thead>
<tr>
<th></th>
<th>< 5000</th>
<th>< 4000</th>
<th>< 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficients γ in the development profit function on:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># tracts in market that have been explored</td>
<td>-25.78</td>
<td>-25.99</td>
<td>-27.67</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.56)</td>
<td>(0.00)</td>
</tr>
<tr>
<td># tracts in market that have been developed</td>
<td>3.15</td>
<td>4.00</td>
<td>4.06</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.17)</td>
<td>(0.00)</td>
</tr>
</tbody>
</table>
Results for small tracts

<table>
<thead>
<tr>
<th></th>
<th>< 5000</th>
<th>Acreage</th>
<th>< 3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficients γ in the development profit function on:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># tracts in market that have been explored</td>
<td>-25.78</td>
<td>-25.99</td>
<td>-27.67</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.56)</td>
<td>(0.00)</td>
</tr>
<tr>
<td># tracts in market that have been developed</td>
<td>3.15</td>
<td>4.00</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.17)</td>
<td>(0.00)</td>
</tr>
</tbody>
</table>

Externalities no longer cancel; negative extraction externality dominates
Results

Importance of strategic interactions depends on tract size

Externalities do not have any net non-cooperative strategic effect on large tracts

During exploration, relative importance of extraction externality with respect to information externality is greater on small tracts
Conclusion

Federal government’s choice of tract size has minimized additional inefficiencies that may have resulted from non-cooperative strategic interactions.
Thank you for coming
Investment stages

1. exploration

2. development

solve backwards
Investment stages

1. exploration

2. development

solve backwards
Stage 2: Development

When to develop an explored tract?

Value of an explored but undeveloped tract \(i \) in market \(k \) at time \(t \) is:

\[
V^e(\Omega_{kt}, \varepsilon_{it}; \theta) = \max\{\pi^d(\Omega_{kt}, \varepsilon_{it}; \theta), \beta V^{ce}(\Omega_{kt}; \theta)\}
\]

where

\[
\pi^d(\Omega_{kt}, \varepsilon_{it}; \theta) = \pi^0_d(\Omega_{kt}; \theta) + \varepsilon_{it}
\]

\[
V^{ce}(\Omega_{kt}; \theta) = E[V^e(\Omega_{k,t+1}, \varepsilon_{i,t+1}; \theta) | \Omega_{kt}, l_{it}^{d=0}]
\]
let $g^d(\Omega_{kt}; \theta) \equiv$ the probability of developing an explored but undeveloped tract at time t conditional on the public information at t

then

$$g^d(\Omega_{kt}; \theta) = \exp\left(- (\beta V^{ce}(\Omega_{kt}; \theta) - \pi^d_0(\Omega_{kt}; \theta)) / \sigma_\varepsilon \right)$$
Stage 2: Development

let \(g^d(\Omega_{kt};\theta) \equiv \) the probability of developing an explored but undeveloped tract at time \(t \) conditional on the public information at \(t \)

then

\[
g^d(\Omega_{kt};\theta) = \exp\left(- \left(\beta V^{ce}(\Omega_{kt};\theta) - \pi_0^d(\Omega_{kt};\theta) \right) / \sigma_\varepsilon \right)
\]

Estimate non-parametrically in 1st step
Stage 2: Development

let $g^d(\Omega_{kt}; \theta) \equiv$ the probability of developing an explored but undeveloped tract at time t conditional on the public information at t

then

$$g^d(\Omega_{kt}; \theta) = \exp \left(- \left(\beta V^{ce}(\Omega_{kt}; \theta) - \pi_0^d(\Omega_{kt}; \theta) \right) / \sigma_\epsilon \right)$$

Match predicted probabilities to data in 2nd step
Estimator of $V_{ce}(\Omega_{kt}; \theta)$

$$V_{ce}^t = \mathbf{M}^e \cdot (\beta \ V_{ce}^{t+1} + \sigma_\varepsilon \ g^d_{t+1})$$

where

- \mathbf{M}^e = empirical transition matrix conditional on $I_t ^d = 0$
- g^d = empirical probability of developing an explored tract

$t \geq T$: solve for fixed point
$t < T$: iterate backwards
Investment stages

1. Exploration

2. development

solve backwards
Stage 1: Exploration

- When to explore an unexplored tract?

- Value of an unexplored tract i in market k at time t is:

$$V^n(\Omega_{kt}, \mu_{it}; \theta) = \max\{\pi^e(\Omega_{kt}, \mu_{it}; \theta), \beta V^c(n)(\Omega_{kt}; \theta)\}$$

where

$$\pi^e(\Omega_{kt}, \mu_{it}; \theta) = E_{\varepsilon}[V^e(\Omega_{kt}, \varepsilon_{it}; \theta) | \Omega_{kt}] - c^e(\Omega_{kt}; \theta) + \mu_{it}$$

$$V^c(n)(\Omega_{kt}; \theta) = E[V^n(\Omega_{k,t+1}, \mu_{i,t+1}; \theta) | \Omega_{kt}, I_{it=0}]$$
Stage 1: Exploration

\[g^e(\Omega_{kt}; \theta) \equiv \text{the probability of exploring an unexplored tract at time } t \text{ conditional on the public information at } t \]

then

\[g^e(\Omega_{kt}; \theta) = \exp\left(- (\beta V^{cn}(\Omega_{kt}; \theta) - (\beta V^{ce}(\Omega_{kt}; \theta) + g^d(\Omega_{kt}; \theta) \sigma_\varepsilon)) / \sigma_\mu \right) \]
Stage 1: Exploration

let \(g^e(\Omega_{kt}; \theta) \equiv \) the probability of exploring an unexplored tract at time \(t \) conditional on the public information at \(t \)

then

\[
g^e(\Omega_{kt}; \theta) = \exp(-\beta V^{cn}(\Omega_{kt}; \theta) - (\beta V^{ce}(\Omega_{kt}; \theta) + g^d(\Omega_{kt}; \theta) \sigma_\epsilon))/ \sigma_\mu
\]
Stage 1: Exploration

let \(g^e(\Omega_{kt}; \theta) \equiv \) the probability of exploring an unexplored tract at time \(t \) conditional on the public information at \(t \)

then

\[
g^e(\Omega_{kt}; \theta) = \exp(- (\beta V^{cn}(\Omega_{kt}; \theta) - (\beta V^{ce}(\Omega_{kt}; \theta) + g^d(\Omega_{kt}; \theta) \cdot \sigma_\varepsilon))/ \sigma_\mu)
\]

Estimate non-parametrically in 1st step
Stage 1: Exploration

let \(g^e(\Omega_{kt};\theta) \equiv \text{the probability of exploring an unexplored tract at time } t \text{ conditional on the public information at } t \)

then

\[
\begin{align*}
g^e(\Omega_{kt};\theta) &= \exp\left(- (\beta V^{cn}(\Omega_{kt};\theta) - (\beta V^{ce}(\Omega_{kt};\theta) + g^d(\Omega_{kt};\theta) \sigma_\varepsilon))/\sigma_\mu \right)
\end{align*}
\]

Match predicted probabilities to data in 2nd step
Estimator of $V^{cn}(\Omega_{kt}; \theta)$

\[V^{cn}_t = M^n (\beta V^{cn}_{t+1} + \sigma \mu g^e_{t+1}) \]

$V^{cn}_{T-1} = 0$

where
- $M^n =$ empirical transition matrix conditional on $l^e_t=0$
- $g^e =$ empirical probability of exploring on an unexplored tract

$t \leq T$: iterate backwards
Additional results

Federal government cannot do better by making the 5-year lease term longer or shorter
previous lit extra slide
Forms of coordination

- joint venture in exploration
 - BUT, may not occur because:
 - negotiations contentious
 - fear of allegations of pre-sale anti-trust violations (esp. among Big 7)
 - prospective partners have incentive to free-ride on info-gathering expenditures

- consolidation of production rights through purchase or unitization
 - BUT, may not occur because:
 - negotiations contentious
 - relative or absolute tract values need to be determined
 - info costs
 - oil migration
Definition of Neighbors

A tract \(j \) is considered a neighbor of tract \(i \) at time \(t \) if:

- located within 5 miles
- lease began before time \(t \)
- has not been explored before \(t-1 \)
- owned by a different firm
Advantages of discrete response model

- leases of neighbors can begin on different dates
 - can use all available data

- reduced-form specification: simple

- can identify parameter of interest

- covariates can be continuous variables
Advantages of structural approach

- estimates structural parameters of the underlying dynamic game
- addresses endogeneity problems without the need for instruments
- determines how a firm’s profits are affected by the decisions of its neighbors
- explicitly models the multi-stage dynamic decision-making problem
Innovations to Pakes, Ostrovsky & Berry (2005)

- actual data
- sequential investments
- exploration is a finite-horizon dynamic optimization problem
- estimate parameters in profit function
Tracts used in structural analysis

Gulf of Mexico
Firms’ perceptions of neighbors

- depend only on the publicly observable market state variables Ω_{kt}

- firms take expectations over neighbors’ private information (shocks)

- $\Pr(\text{neighbor invests}) = \Pr(\text{profits} > \text{continuation value})$
 - expectations taken over the private shocks
Estimator of $V^{ce}(\Omega_{kt}; \theta)$

$$V^{ce}_t = M^e \left(\beta V^{ce}_{t+1} + \sigma^e g^d_{t+1} \right)$$

where
- M^e = empirical transition matrix conditional on $I^d_t = 0$
- g^d = empirical probability of developing an explored tract

$t \geq T$: solve for fixed point
$t < T$: iterate backwards
Estimator of $V^{cn}(\Omega_{kt};\theta)$

$$V^{cn}_{t} = M^n \triangleright \left(\beta V^{cn}_{t+1} + \sigma_\mu g^e_{t+1} \right)$$

$$V^{cn}_{T-1} = 0$$

where

- M^n = empirical transition matrix conditional on $l_t^e=0$
- g^e = empirical probability of exploring on an unexplored tract

$t \leq T$: iterate backwards
Modifying the leasing program

- change lease terms
- encourage unitization of exploration programs
 - Ex: limit the amount of nonunitized acreage that a firm can possess
- require firms to make their seismic reports publicly available
- change the quantity, size or location of the tracts offered in each lease sale
- use multi-unit auctions
- make contractual environment more conducive to coordination
- taxes/regulation
Possible effects of decreasing tract size

- increase # bidders
 - increase bid levels (competitive pressure)
 - decrease bid levels (winner’s curse)

- information & extraction externalities
 - decrease bid levels (government does not extract rents from internalizing externalities)

- other reasons why gov’t might prefer smaller tracts
 - political (why ban joint bids among large firms in 1975?)
 - other?
Efficiency of OCS wildcat leasing program

- **PROs:**
 - revenue maximization: gov’t captures a reasonable share (~77%) of the rents in wildcat auctions

- **CONs:**
 - information externalities
 - extraction externalities
 - environmental costs
 - domestic strategic needs
Reasons OCS wildcat leasing program is socially inefficient

1. Information externalities
 - firms learn information about their tracts when other firms explore or develop neighboring tracts
 - noncooperative war of attrition
 - Hendricks & Porter, 1993
 - Porter, 1995
 - too little exploration at the beginning of the lease term
 - duplicative drilling in the final period of the lease
Reasons OCS wildcat leasing program is socially inefficient

1. Information externalities (cont)

- optimal coordinated plan = sequential search
 - 1st period: drill one tract
 - if productive, drill neighboring tract in next period
Reasons OCS wildcat leasing program is socially inefficient

2. Extraction externalities

- marginal costs of extraction may vary with the quantity of oil remaining in a reserve

- a firm’s extraction affects extraction costs of
 - itself
 - firms owning neighboring tracts
Reasons OCS wildcat leasing program is socially inefficient

3. Environmental costs of production process

- Direct costs
 - ecosystem damage caused by exploratory drilling
 - pollutants emitted during reserve development
 - oil spillage during extraction
- Indirect costs
 - markets for renewable energy
 - incentives for technological innovation in energy industry
Reasons OCS wildcat leasing program is socially inefficient

4. Strategic
 - need for a domestic strategic oil reserve
 - socially optimal policy
 - involve less delay, or
 - tie the production rate to current political factors