Optimal investment strategy in low-carbon energy R&D with uncertain payoff

Emily Fertig
Ph.D. candidate, Department of Engineering and Public Policy

Jay Apt
Professor, Department of Engineering and Public Policy and Tepper School of Business

Carnegie Mellon University

November 6, 2012
Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
- This work, while neglecting other uncertainties and interactions in the climate/economy system, isolates the effect of uncertainty in technological learning on the value of an energy R&D investment opportunity.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
- This work, while neglecting other uncertainties and interactions in the climate/economy system, isolates the effect of uncertainty in technological learning on the value of an energy R&D investment opportunity.
- In doing so, it accounts for the value of exploratory investment in technologies with negative NPV but a small probability of great success, the possibility of negative learning, and the value of flexible future decision making once uncertainty is resolved.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
- This work, while neglecting other uncertainties and interactions in the climate/economy system, isolates the effect of uncertainty in technological learning on the value of an energy R&D investment opportunity.
- In doing so, it accounts for the value of exploratory investment in technologies with negative NPV but a small probability of great success, the possibility of negative learning, and the value of flexible future decision making once uncertainty is resolved.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
- This work, while neglecting other uncertainties and interactions in the climate/economy system, isolates the effect of uncertainty in technological learning on the value of an energy R&D investment opportunity.
- In doing so, it accounts for the value of exploratory investment in technologies with negative NPV but a small probability of great success, the possibility of negative learning, and the value of flexible future decision making once uncertainty is resolved.
Overview and motivation

- Any serious effort at greenhouse gas mitigation will require decarbonization of the electricity sector.
- Technological change is an important factor in predicting the future cost of greenhouse gas abatement.
- Despite large uncertainties, costs of energy technologies are often modeled as deterministic.
- This work, while neglecting other uncertainties and interactions in the climate/economy system, isolates the effect of uncertainty in technological learning on the value of an energy R&D investment opportunity.
- In doing so, it accounts for the value of exploratory investment in technologies with negative NPV but a small probability of great success, the possibility of negative learning, and the value of flexible future decision making once uncertainty is resolved.
Framing of the investment problem

- A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.
A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.

The cost of the technology is stochastic; R&D investment decreases cost in expected value.
Framing of the investment problem

- A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.
- The cost of the technology is stochastic; R&D investment decreases cost in expected value.
- In 2030, a deterministic CO$_2$ price is enacted; at this time, the investment decision in deploying the technology is now-or-never and based on NPV analysis.
Framing of the investment problem

- A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.
- The cost of the technology is stochastic; R&D investment decreases cost in expected value.
- In 2030, a deterministic CO\(_2\) price is enacted; at this time, the investment decision in deploying the technology is now-or-never and based on NPV analysis.
- This framing is similar to valuing a European put option.
Framing of the investment problem

- A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.
- The cost of the technology is stochastic; R&D investment decreases cost in expected value.
- In 2030, a deterministic CO$_2$ price is enacted; at this time, the investment decision in deploying the technology is now-or-never and based on NPV analysis.
- This framing is similar to valuing a European put option.
 - Asset price: net present cost of using the developed technology to mitigate CO$_2$ (stochastic)
Framing of the investment problem

- A U.S. government decision-maker can invest in R&D of a developmental energy technology, stopping and starting at any time between 2015 and 2030.
- The cost of the technology is stochastic; R&D investment decreases cost in expected value.
- In 2030, a deterministic CO\textsubscript{2} price is enacted; at this time, the investment decision in deploying the technology is now-or-never and based on NPV analysis.
- This framing is similar to valuing a European put option.
 - Asset price: net present cost of using the developed technology to mitigate CO\textsubscript{2} (stochastic)
 - Exercise price: avoided net present cost of mitigating CO\textsubscript{2} with a backstop technology (deterministic, reflective of CO\textsubscript{2} price)
Stochastic cost model

\[\frac{dC}{C} = -\lambda I \, dt + \sigma \, dz \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Net present cost of CO$_2$ mitigation with modeled technology</td>
</tr>
<tr>
<td>I</td>
<td>Annual R&D investment</td>
</tr>
<tr>
<td>λ</td>
<td>Effectiveness of R&D spending</td>
</tr>
<tr>
<td>σ</td>
<td>Annual proportional standard deviation of C</td>
</tr>
<tr>
<td>z</td>
<td>Standard Brownian motion</td>
</tr>
</tbody>
</table>
Stochastic cost model

- Dashed lines are 95% prediction interval
Stochastic cost model

- Dashed lines are 95 % prediction interval
- Final cost, measured at time $t = 7$, follows a lognormal distribution (right)
Dashed lines are 95% prediction interval

Final cost, measured at time $t = 7$, follows a lognormal distribution (right)

Unlike in Monte Carlo analysis, e.g., no sample paths are generated
Solution method: continuous time SDP

- Proceed from the Bellman equation:

\[
V(C, t) = \max_I \left\{ -I \Delta t + \frac{1}{1 + \mu \Delta t} \mathbb{E}[V(C', t + \Delta t) | C, I] \right\}
\]
Solution method: continuous time SDP

- Proceed from the Bellman equation:

\[V(C, t) = \max_I \left\{ -I\Delta t + \frac{1}{1 + \mu\Delta t} \mathbb{E}[V(C', t + \Delta t) | C, I] \right\} \]

- Substitution yields the PDE:

\[\mu V = \max_I \left\{ I \left(-\lambda C \frac{\partial V}{\partial C} - 1 \right) + \frac{1}{2} \sigma^2 C^2 \frac{\partial^2 V}{\partial C^2} + \frac{\partial V}{\partial t} \right\} \]
Solution method: continuous time SDP

1. Proceed from the Bellman equation:

\[
V(C, t) = \max_I \left\{-I \Delta t + \frac{1}{1 + \mu \Delta t} \mathbb{E}[V(C', t + \Delta t) | C, I]\right\}
\]

2. Substitution yields the PDE:

\[
\mu V = \max_I \left\{ I \left(-\lambda C \frac{\partial V}{\partial C} - 1 \right) + \frac{1}{2} \sigma^2 C^2 \frac{\partial^2 V}{\partial C^2} + \frac{\partial V}{\partial t} \right\}
\]

3. The PDE is solved numerically using the Crank-Nicolson method in MATLAB.
R&D investment decision rule

- Above C_u R&D spending is unlikely to reduce cost sufficiently.
R&D investment decision rule

- Above C_u, R&D spending is unlikely to reduce cost sufficiently.
- Below C_l, the technology is already so inexpensive that further R&D is not justified.
R&D investment decision rule

- Above C_u R&D spending is unlikely to reduce cost sufficiently
- Below C_l the technology is already so inexpensive that further R&D is not justified
- Between the thresholds R&D spending at the maximum feasible rate is optimal
Estimating λ, q, and σ for solar PV

Solar PV could mitigate 0.25 GtC/yr in the U.S. at 800 GW by 2050 (under assumptions of Drury et al. (2009); BAU 2050 U.S. emissions is 0.85 GtC/yr (AEO)). Assuming constant growth until 2050, a discount rate of 3%, a 30-year lifetime, deterministic learning after 2030, and a carbon price of $20/\text{tCO}_2$, avoided CO$_2$ emissions from solar PV discounted to 2030 amount to 170 billion. If maximum yearly R&D spending $q = 400$ million, then $\lambda = 0.13$.\footnote{Drury, E., Denholm, P., and Margolis, R. The solar photovoltaics wedge: pathways for growth and potential carbon mitigation in the US. Environmental Research Letters 4 (2009) 034010 (11pp).}
Estimating λ, q, and σ for solar PV

• Drury et al. (2009) project U.S. solar PV capacity will grow by 17 % per year with a learning rate of 20 %.1

• At these rates cost would decrease by 53 % from 2015 to 2030.

Estimating λ, q, and σ for solar PV

- Drury et al. (2009) project U.S. solar PV capacity will grow by 17 % per year with a learning rate of 20 %.\(^1\)
- At these rates cost would decrease by 53 % from 2015 to 2030.
- Solar PV could mitigate 0.25 GtC/yr in the U.S. at 800 GW by 2050 (under assumptions of Drury et al. (2009); BAU 2050 U.S. emissions is 0.85 GtC/yr (AEO)).

Estimating $\lambda, q, \text{ and } \sigma$ for solar PV

- Drury et al. (2009) project U.S. solar PV capacity will grow by 17 % per year with a learning rate of 20 %.\(^1\)
- At these rates cost would decrease by 53 % from 2015 to 2030.
- Solar PV could mitigate 0.25 GtC/yr in the U.S. at 800 GW by 2050 (under assumptions of Drury et al. (2009); BAU 2050 U.S. emissions is 0.85 GtC/yr (AEO)).
- Assuming constant growth until 2050, a discount rate of 3 %, a 30-year lifetime, deterministic learning after 2030, and a carbon price of $20/tCO_2$, avoided CO$_2$ emissions from solar PV discounted to 2030 amount to $170 billion.

Estimating λ, q, and σ for solar PV

- Drury et al. (2009) project U.S. solar PV capacity will grow by 17 % per year with a learning rate of 20 %.\(^1\)
- At these rates cost would decrease by 53 % from 2015 to 2030.
- Solar PV could mitigate 0.25 GtC/yr in the U.S. at 800 GW by 2050 (under assumptions of Drury et al. (2009); BAU 2050 U.S. emissions is 0.85 GtC/yr (AEO)).
- Assuming constant growth until 2050, a discount rate of 3 %, a 30-year lifetime, deterministic learning after 2030, and a carbon price of $20/\text{tCO}_2$, avoided CO\(_2\) emissions from solar PV discounted to 2030 amount to $170 billion.
- If maximum yearly R&D spending $q = $400 million, then $\lambda = 0.13$.

NPV analysis

The initial NPV of the investment opportunity was calculated by finding the optimal investment strategy under expected cost.
NPV analysis

- The initial NPV of the investment opportunity was calculated by finding the optimal investment strategy under expected cost.

![Graph showing initial NPV analysis](image)

- Initial Cost vs Investment value ($B)
- Time (y) vs Cost ($B)
Value of investment opportunity with stochastic cost
Comparative statics: σ (cost volatility)

- Uncertainty adds substantial value for high initial cost but slightly lowers value for lower initial cost.
- Uncertainty renders initial investment in unprofitable projects optimal.
Comparative statics: λ (R&D effectiveness)

- Greater effectiveness of R&D spending adds substantial value to the investment opportunity and raises the cost threshold below which initial investment is optimal.
Comparative statics: q (maximum yearly R&D spending)

- Raising the maximum level of R&D investment has less effect on the value of the investment opportunity than raising λ.
- For higher q, C_u is higher due to greater ability to drive costs down, and C_l is higher due to the discount rate (since more R&D spending can be shifted to the future).
Unlike NPV analysis, optimizing R&D investment strategy under uncertainty captures the value of initial investment in negative-NPV projects, the possibility of negative learning, and the ability to update decisions as uncertainty is resolved.
Unlike NPV analysis, optimizing R&D investment strategy under uncertainty captures the value of initial investment in negative-NPV projects, the possibility of negative learning, and the ability to update decisions as uncertainty is resolved.

Most climate-economy models ignore these characteristics of technological learning; this work isolates uncertainty in learning to illustrate its effect on the value of an R&D investment opportunity.
Unlike NPV analysis, optimizing R&D investment strategy under uncertainty captures the value of initial investment in negative-NPV projects, the possibility of negative learning, and the ability to update decisions as uncertainty is resolved.

Most climate-economy models ignore these characteristics of technological learning; this work isolates uncertainty in learning to illustrate its effect on the value of an R&D investment opportunity.

Greater uncertainty promotes early investment in a developmental energy technology.
Unlike NPV analysis, optimizing R&D investment strategy under uncertainty captures the value of initial investment in negative-NPV projects, the possibility of negative learning, and the ability to update decisions as uncertainty is resolved.

Most climate-economy models ignore these characteristics of technological learning; this work isolates uncertainty in learning to illustrate its effect on the value of an R&D investment opportunity.

Greater uncertainty promotes early investment in a developmental energy technology.

Further work will produce a decision support tool to yield insight into optimal R&D investment strategy under varying expectations on the effectiveness and risk of R&D spending.
The authors thank Erica Fuchs, Granger Morgan, Emilio Osambela, Dalia Patiño-Echeverri, and Mort Webster for helpful comments and conversations.

This work was supported in part by the Graduate Research Fellowship Program of the US National Science Foundation and by the Claire and John Bertucci Fellowship in Engineering, as well as by grants from the Electric Power Research Institute (EPRI) to the Carnegie Mellon Electricity Industry Center; from the Doris Duke Charitable Foundation, the Richard King Mellon Foundation and the Heinz Endowments to the RenewElec program at Carnegie Mellon University; and from the US National Science Foundation under Award SES-0949710.
Questions?