Empirical Assessment of the Effectiveness of Green Policies

Julian Dieler a), Markus Zimmer a), Darko Jus b)

a) Ifo Institute for Economic Research at the University of Munich
b) Center for Economic Studies (CES), University of Munich
Motivation

- Debate about most effective policy measure to reduce emission of GHG

Definition: Effectiveness of Policy Measure = elasticity of energy demand

- Focus on demand side policies
- Estimation of price elasticities is well established but what about tax elasticities?
- International comparison of the effectiveness of green policies
- Differentiation between price and tax effects
1. Motivation
2. Literature
3. Data
4. Empirical strategy
5. Results
6. Conclusion & Outlook
• Hughes, Knittel and Sperling (2008), “Evidence of a shift in the short
run price elasticity of gasoline demand”, The Energy Journal

• Li, Linn and Muehlegger (2012), “Gasoline Taxes and Consumer

• Cooper (2003), “Price elasticity of demand for crude oil: estimates for
23 countries”, OPEC Review.
• **Panel data:** - 1965-2010 (yearly)
 - OECD countries + significant emerging countries

• **Taxes:** - OECD Revenue Statistics
 → calculation of implicit unit tax rates (direct/indirect)

Definition:
- Direct taxes = taxes levied on energy product
- Indirect taxes = taxes levied on complementary goods

- IEA Energy Prices and Taxes Statistics
 → differentiation possible according to sectors
 (household and industry), but: only direct taxes

• **Goal:** - include data for subsidies and other regulatory measures
 → creation of a harmonized dataset for green policies
Dieler

Empirical Assessment of the Effectiveness of Green Policies

source: OECD, IEA, own calculations
Empirical Strategy

- **Demand function**: \(q_t = e^{\alpha} \cdot p_t^\beta \cdot \gamma_t^\gamma \)

 \(q_t \): oil demand per capita in year \(t \)

 \(e^{\alpha} \): constant

 \(p_t \): price in year \(t \)

 \(\gamma_t \): GDP per capita in year \(t \)

- **Estimation equation (panel)**:

 \[
 \ln \left(\frac{q_{i,t}}{q_{i,t-1}} \right) = \alpha + \beta \cdot \ln \left(\frac{p_{i,t}}{p_{i,t-1}} \right) + \gamma \cdot \ln \left(\frac{\gamma_{i,t}}{\gamma_{i,t-1}} \right) + \rho_t + \varepsilon_{i,t}
 \]

 \[
 q_{i,t} = \alpha + \beta \cdot p_{i,t} + \gamma \cdot \gamma_{i,t} + \rho_t + \varepsilon_{i,t}
 \]

 \(\rho_t \): time fixed effects

 \(\varepsilon_{i,t} \): country-specific error terms

 \(\Rightarrow \beta \) is price elasticity of demand
Problem of price endogeneity!

- **IV-approach:** changes in taxes as instrument for price (Davis and Kilian 2011)
 - estimation of tax elasticities

- **Structured VAR approach:** simultaneous estimation of price and tax elasticities
Panel OLS Estimates

<table>
<thead>
<tr>
<th></th>
<th>Panel (38 countries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil demand</td>
<td></td>
</tr>
<tr>
<td>Oilprice</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td>(0.021)***</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>0.157</td>
</tr>
<tr>
<td></td>
<td>(0.044)***</td>
</tr>
<tr>
<td>Const.</td>
<td>-0.006</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.03</td>
</tr>
<tr>
<td>N</td>
<td>785</td>
</tr>
</tbody>
</table>

* $p<0.1$; ** $p<0.05$; *** $p<0.01$
IV estimates of diesel demand

<table>
<thead>
<tr>
<th>Variables</th>
<th>Austria households</th>
<th>Austria industry</th>
<th>Chile households (1)</th>
<th>Germany households</th>
<th>Germany industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel tax</td>
<td>-0.286 (0.125)**</td>
<td>-0.408 (0.245)*</td>
<td>-0.290 (0.204)</td>
<td>-0.175 (0.061)**</td>
<td>-0.286 (0.183)</td>
</tr>
<tr>
<td>Const.</td>
<td>0.027 (0.010)*****</td>
<td>0.026 (0.010)**</td>
<td>0.042 (0.024)*</td>
<td>0.013 (0.005)*****</td>
<td>0.015 (0.007)****</td>
</tr>
<tr>
<td>N</td>
<td>31</td>
<td>31</td>
<td>9</td>
<td>31</td>
<td>31</td>
</tr>
</tbody>
</table>

* p<0.1; ** p<0.05; *** p<0.01
(1) no observations for Chile industry
Conclusion & Outlook

Conclusion:

• Taxes on oil products do reduce consumption
• Large differences between countries

Outlook

• Further development of the harmonized green policy database
• Integration of findings into an IAM
• Extension of the theoretical foundation
Contact: Julian Dieler
Email: dieler@ifo.de
Phone: +49/89/9224 1346
Results

IV estimates of diesel demand

<table>
<thead>
<tr>
<th>Variables</th>
<th>Ireland households</th>
<th>Ireland industry</th>
<th>Netherlands households</th>
<th>Netherlands industry</th>
<th>Norway households</th>
<th>Norway industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel tax</td>
<td>-0.223 (0.122)*</td>
<td>-0.328 (0.197)*</td>
<td>0.065 (0.049)</td>
<td>0.289 (0.283)</td>
<td>-0.165 (0.093)*</td>
<td>0.091 (0.140)</td>
</tr>
<tr>
<td>Const.</td>
<td>0.045 (0.013)***</td>
<td>0.049 (0.016)***</td>
<td>0.013 (0.005)**</td>
<td>0.004 (0.014)</td>
<td>0.010 (0.008)</td>
<td>0.014 (0.012)</td>
</tr>
<tr>
<td>N</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>31</td>
<td>13</td>
<td>31</td>
</tr>
</tbody>
</table>

* $p<0.1$; ** $p<0.05$; *** $p<0.01$
IV estimates of diesel demand

<table>
<thead>
<tr>
<th>Variables</th>
<th>Poland households</th>
<th>Poland industry</th>
<th>Sweden households</th>
<th>Sweden industry</th>
<th>Switzerland households</th>
<th>Switzerland industry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel tax</td>
<td>-0.029 (0.202)</td>
<td>-0.085 (0.037)**</td>
<td>-0.098 (0.035)**</td>
<td>-0.056 (0.050)</td>
<td>-0.285 (0.154)*</td>
<td>0.416 (0.389)</td>
</tr>
<tr>
<td>Const.</td>
<td>0.053 (0.026)**</td>
<td>0.059 (0.017)**</td>
<td>0.017 (0.005)**</td>
<td>0.013 (0.006)**</td>
<td>0.022 (0.007)**</td>
<td>0.004 (0.011)</td>
</tr>
<tr>
<td>N</td>
<td>16</td>
<td>23</td>
<td>31</td>
<td>31</td>
<td>30</td>
<td>15</td>
</tr>
</tbody>
</table>

*$p<0.1$; **$p<0.05$; ***$p<0.01$