The BC Carbon Tax: Consumer Response to an Environmental Gasoline Tax

By
Jean-Thomas Bernard
Grant Guenther
and
Maral Kichian
University of Ottawa
July 2013
Order of Presentation

- Introduction
- I. Previous Studies
- II. Data
- III. Econometric models and results
- Conclusion
Introduction

I. The B.C. Carbon Tax
 — The level: 10$/ton of CO$_2$ (July 2008) to 30$ (July 2012).
 — Added 6.67¢/litre.
 — Revenue neutral.
 — Drew a lot of attention, rather well received.

II. Research objective:

 To measure the consumer response to the new per unit gasoline tax.

Interest over time

The number 100 represents the peak search interest.
I. Previous Studies

II. Data

Figure 1. Monthly Gasoline Sales per capita (litres)
Figure 2: Real Monthly GDP per capita
Figure 3: Real Gasoline Price (Cents per litre)
III. Econometric Models and Results

Model 1:

\[Y_t = \beta + \delta Y_{t-1} + \gamma \Delta GDP_t + \alpha P_t + \varepsilon \]

\(Y_t\) = monthly per capita gasoline sales.

\(\Delta GDP_t\) = change in monthly per capita real GDP.

\(P_t\) = real gasoline price.

Model 2:

\[Y_t = \beta + \delta Y_{t-1} + \gamma \Delta GDP_t + \alpha_1 \Delta P_{1,t} + \alpha_2 P_{2,t} + \varepsilon \]

\(Y_t\) = monthly per capita gasoline sales.

\(\Delta GDP_t\) = change in monthly per capita real GDP.

\(\Delta P_{1,t}\) = change in real gasoline price net of real excise taxes.

\(P_{2,t}\) = excise tax inclusive carbon tax.

Model 3:

\[Y_t = \beta + \delta Y_{t-1} + \gamma \Delta GDP_t + \alpha_1 \Delta P_{1,t} + \alpha_2 P_{2,t} + \alpha_3 P_{3,t} + \varepsilon \]

\(Y_t\) = monthly per capita gasoline sales.

\(\Delta GDP_t\) = change in monthly per capita real GDP.

\(\Delta P_{1,t}\) = change in real gasoline price net of real excise taxes.

\(P_{2,t}\) = real excise taxes net of carbon tax.

\(P_{3,t}\) = real carbon tax.

Model 4:

\[Y_t = \beta + \gamma \Delta GDP_t + \alpha_1 P_t + \theta D_t + \varepsilon_t \]

\(D_t\) = introduction effect (demand shift).
<table>
<thead>
<tr>
<th>Model</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>71.33</td>
<td>98.12</td>
<td>92.55</td>
<td>94.77</td>
</tr>
<tr>
<td></td>
<td>(7.19)</td>
<td>(9.09)</td>
<td>(9.01)</td>
<td>(1.01)</td>
</tr>
<tr>
<td>Lag consumption</td>
<td>0.265</td>
<td>0.127</td>
<td>0.056</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.076)</td>
<td>(0.078)</td>
<td>-</td>
</tr>
<tr>
<td>Δ in GDP</td>
<td>0.135</td>
<td>0.217</td>
<td>0.152</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>(0.049)</td>
<td>(0.050)</td>
<td>(0.053)</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Total price</td>
<td>-0.093</td>
<td>-</td>
<td>-</td>
<td>-0.083</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>-</td>
<td>-</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Δ in excise tax exclusive price</td>
<td>-</td>
<td>-0.064</td>
<td>-0.073</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.015)</td>
<td>(0.015)</td>
<td>-</td>
</tr>
<tr>
<td>Excise and carbon tax</td>
<td>-</td>
<td>-0.677</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>(0.132)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Excise tax</td>
<td>-</td>
<td>-</td>
<td>-0.0215</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.194)</td>
<td>-</td>
</tr>
<tr>
<td>Carbon tax</td>
<td>-</td>
<td>-</td>
<td>-1.214</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>(0.212)</td>
<td>-</td>
</tr>
<tr>
<td>Introduction effect</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-4.15</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.60)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.50</td>
<td>0.56</td>
<td>0.58</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses.
Conclusion

When the tax is completely phased in, we have:

— Monthly reduction of 4.6 litres per capita.
— Annual reduction of 248,000,000 litres or 5.3% of 2011 gasoline sales.
— Annual reduction of 580,000 tons of CO$_2$
— 1.0% of total GHG emissions in 2010: 62 million tons.