What if oil is less substitutable?
A New-Keynesian Model with Oil, Price and Wage Stickiness including Capital Accumulation

Verónica Acurio Vásconez

CES, PSE, University Paris I

IAEE 37th International Conference
New York, June 17th 2014
Outline

Goals

Model

Special Features
 Households
 Intermediate Good Firms
 GDP Definition

Estimation
 Setting
 Estimation Results

Impulse Response Functions
Outline

Goals

Model

Special Features

Estimation

Impulse Response Functions
Goals

• Construct a New-Keynesian model with labor, capital and oil in the production function; and domestic goods and oil in the consumption flow. Both using CES functions.

• Add price and wage stickiness.

• Estimate the model’s parameters with Bayesian techniques, using U.S data from 1984:Q1 to 2007:Q1.

• Study the impact of an oil shock in this economy.
Why a CES?

Figure: US Oil consumption per capita (Mtoe) and Spot Oil Prices
Outline

Goals

Model

Special Features

Estimation

Impulse Response Functions
Model Structure

Domestic Economy
Model Structure

- Domestic Economy
- Final Good Firm
- Households
Model Structure

Domestic Economy

Households

Final Good Firm

<table>
<thead>
<tr>
<th>l.s taxes</th>
<th>invest</th>
<th>work</th>
<th>consume</th>
</tr>
</thead>
</table>

Foreign exogenous price

Labor

Capital

Oil produces

Intermediate Firms

Oil

Final Goods

Taylor

Government
Model Structure

Domestic Economy

- l.s taxes
- invest
- work
- capital
- consume

Final Good Firm

Oil produces

Intermediate Firms

Labor, Capital

Foreign exo p., exogenous price

Government

Taylor
Model Structure

Domestic Economy → Final Good Firm

- Households
 - investment
 - work
 - consumption

- Final Goods
 - Oil

- Final Goods Firm
 - Produces
 - Intermediate Firms
 - Labor
 - Capital
 - Exogenous Price

- Government
 - Taylor
Model Structure

Domestic Economy

Households

Final Good Firm

Final Goods

Oil

Households

- invest
- work
- consume

Domestic Economy

- l.s taxes
- bonds
- capital

Final Good Firm

- Oil

Intermediate Firms

- Oil
- Labor
- Capital

Foreign exo p.

Government

Taylor
Model Structure

- **Domestic Economy**
 - l.s. taxes
 - invest
 - work
 - consume

- **Final Good Firm**
 - Intermediate Firms

- **Households**
 - Final Goods
 - Oil

- **Intermediate Firms**
 - Oil
 - Labor
 - Capital
 - Profit

- **Final Goods**
 - Final Good Firm
 - Intermediate Firms

- **Goals**
 - Special Features
 - Estimation
 - Impulse Response Functions
Model Structure

Domestic Economy

- Households
 - Invest
 - Work
 - Consume

Final Good Firm

Intermediate Firms

- Oil
- Labor
- Capital

Final Goods

Oil

Special Features

Estimation

Impulse Response Functions
Model Structure

- **Domestic Economy**
 - invest
 - work
 - consume
 - l.s taxes
 - bonds
 - capital

- **Final Good Firm**

- **Intermediate Firms**
 - exo p.

- **Final Goods**
 - Oil
 - Labor
 - Capital

- **Oil**

- **Taylor**

- **Goals**
- **Model**
- **Special Features**
- **Estimation**
- **Impulse Response Functions**
Model Structure

Goals

Model

Special Features

Estimation

Impulse Response Functions

Domestic Economy

Final Good Firm

Households

Intermediate Firms

Final Goods

Oil

Labor

Capital

Foreign

l.s taxes

invest

work

consume

bonds

capital

profits

produces

exogenous price

oil

exo p.

exo p.
Model Structure

Goals

Model

Special Features

Estimation

Impulse Response Functions

Government

Domestic Economy

Final Good Firm

Households

Intermediate Firms

Foreign

Oil

Labor

Capital

Final Goods

Oil

Taxes

Invest

Work

Consume

Taylor

Bonds

Capital

Profits

Exo P.

Exo P.

Exo P.

Exogenous Price

Final Goods

Intermediate Firms

Government

Households

Final Good Firm

Foreign

Oil

Labor

Capital

Taxes

Invest

Work

Consume

Taylor

Bonds

Capital

Profits

Exo P.

Exo P.

Exo P.

Exogenous Price
Outline

Goals

Model

Special Features

- Households
- Intermediate Good Firms
- GDP Definition

Estimation

Impulse Response Functions
Households’ CES Consumption Function

\[C_t(j) := ((1 - x_c)^{1-\sigma} C_{q,t}(j) + x_c^{1-\sigma} C_{e,t}(j))^{\frac{1}{\sigma}} \]
Households’ CES Consumption Function

\[C_t(j) := ((1 - x_c)^{1-\sigma} C^\sigma_{q,t}(j) + x_c^{1-\sigma} C^\sigma_{e,t}(j))^{\frac{1}{\sigma}} \]

\[\sigma = \frac{\eta_c - 1}{\eta_c} \]
Households’ CES Consumption Function

\[C_{q,t}(j) := \left(\int_0^1 C_{q,t}(i,j)^{1-\frac{1}{\epsilon_p}} \, di \right)^{\frac{\epsilon_p}{\epsilon_p-1}} \]

\[C_t(j) := ((1 - \chi_c)^{1-\sigma} C_{q,t}(j) + \chi_c^{1-\sigma} C_{e,t}(j))^\frac{1}{\sigma} \]

\[\sigma = \frac{\eta_c-1}{\eta_c} \]
Intermediate Good Firms’ CES Production Function
Intermediate Good Firms’ CES Production Function

\[Q_t(i) := (x_p(A_{E,t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^\rho)^{1/\rho} \]

\[\rho = \frac{\eta_p - 1}{\eta_p} \]
GDP (in value added)

\[P_{c,t} Y_t = P_{q,t} Q_t - P_{e,t} E_t \]
Outline

Goals

Model

Special Features

Estimation
 Setting
 Estimation Results

Impulse Response Functions
Calibrated Parameters

<table>
<thead>
<tr>
<th>β</th>
<th>δ</th>
<th>ϵ_p</th>
<th>ϵ_w</th>
<th>ω</th>
<th>χ_c</th>
<th>χ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.99</td>
<td>0.025</td>
<td>8</td>
<td>8</td>
<td>0.18</td>
<td>0.03</td>
<td>1.6635×10^{-8}</td>
</tr>
</tbody>
</table>

Table: Calibrated Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Share” parameter on capital</td>
<td>α Normal(0.3,0.05)</td>
<td>0.3329 0.3399 0.3129 0.3711</td>
</tr>
<tr>
<td>Elast. substitution in production</td>
<td>η_p Inv_Gamma(0.135,inf)</td>
<td>0.1215 0.1254 0.1053 0.1461</td>
</tr>
<tr>
<td>Elast. substitution in consumption</td>
<td>η_c Inv_Gamma(0.135,inf)</td>
<td>0.0625 0.1112 0.0319 0.2085</td>
</tr>
<tr>
<td>Inverse Frisch elasticity</td>
<td>ϕ Normal(1.17,0.5)</td>
<td>1.2732 1.2148 0.7667 1.6638</td>
</tr>
<tr>
<td>Taylor rule response to inflation</td>
<td>ϕ_{π} Normal(1.2,0.1)</td>
<td>1.0000 1.0226 1.0000 1.0499</td>
</tr>
<tr>
<td>Taylor rule response to output</td>
<td>ϕ_{y} Normal(0.5,0.1)</td>
<td>0.8744 0.9097 0.7994 1.0336</td>
</tr>
<tr>
<td>Calvo price parameter</td>
<td>θ_p Beta(0.5,0.2)</td>
<td>0.5000 0.5181 0.5001 0.5386</td>
</tr>
<tr>
<td>Calvo wage parameter</td>
<td>θ_w Beta(0.5,0.2)</td>
<td>0.8188 0.8075 0.7620 0.8535</td>
</tr>
</tbody>
</table>

Table: Prior and Posterior Distribution of Structural Parameters
Goals Model

Special Features

- **Estimation Impulse Response Functions**

Parameter Prior and Posterior Distribution

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td>Autoregressive parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real oil price</td>
<td>ρ_{se} Beta(0.5,0.2)</td>
<td>0.9976</td>
</tr>
<tr>
<td>Real capital price</td>
<td>ρ_{sk} Beta(0.5,0.2)</td>
<td>0.9692</td>
</tr>
<tr>
<td>Government</td>
<td>ρ_{g} Beta(0.5,0.2)</td>
<td>0.9364</td>
</tr>
<tr>
<td>Monetary</td>
<td>ρ_{i} Beta(0.5,0.2)</td>
<td>0.9414</td>
</tr>
<tr>
<td>Oil productivity</td>
<td>ρ_{ae} Beta(0.5,0.2)</td>
<td>0.6862</td>
</tr>
<tr>
<td>TFP</td>
<td>ρ_{alk} Beta(0.5,0.2)</td>
<td>0.7317</td>
</tr>
<tr>
<td>Oil Prod. in Gov</td>
<td>$\rho_{ae,g}$ Beta(0.5,0.2)</td>
<td>0.2043</td>
</tr>
<tr>
<td>TFP in Gov.</td>
<td>$\rho_{alk,g}$ Beta(0.5,0.2)</td>
<td>0.7103</td>
</tr>
<tr>
<td>Price markup1</td>
<td>ρ_{p} Beta(0.5,0.2)</td>
<td>0.7838</td>
</tr>
<tr>
<td>Wage markup1</td>
<td>ρ_{w} Beta(0.5,0.2)</td>
<td>0.3469</td>
</tr>
<tr>
<td>Price markup2</td>
<td>ν_{p} Beta(0.5,0.2)</td>
<td>0.2849</td>
</tr>
<tr>
<td>Wage markup2</td>
<td>ν_{w} Beta(0.5,0.2)</td>
<td>0.4953</td>
</tr>
</tbody>
</table>

Table: Prior and Posterior Distribution of Shock Parameters
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Prior distribution</th>
<th>Posterior distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mode</td>
</tr>
<tr>
<td>Standard deviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real oil price</td>
<td>σ_{se}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Real capital price</td>
<td>σ_{sk}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Government</td>
<td>σ_{g}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Monetary</td>
<td>σ_{i}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Oil productivity</td>
<td>σ_{ae}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>TFP</td>
<td>σ_{alk}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Price markup</td>
<td>σ_{p}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
<tr>
<td>Wage markup</td>
<td>σ_{w}</td>
<td>Inv_Gamma(1,2)</td>
</tr>
</tbody>
</table>

Table: Prior and Posterior Distribution of Shock Parameters
Outline

Goals

Model

Special Features

Estimation

Impulse Response Functions

Impulse Response Functions
IRF to a Real Oil Price Shock
Log-linearized real wage inflation equation

\[\pi_{q,t} + \pi_{wr,t} = \beta \mathbb{E} [\pi_{q,t+1} + \pi_{wr,t+1}] + \frac{(1 - \theta_w)(1 - \beta \theta_w)}{\theta_w(1 + \phi \epsilon_w)} (mrs_{t+s_c,t - wr,t}) + \epsilon_{w,t} \]
Optimal Expenditure Allocation

Household’s Optimal Expenditure Allocation
Optimal Expenditure Allocation

Household’s Optimal Expenditure Allocation

$$\max_{C_q,t, C_e,t} P_{C,t}(j)$$

s. t

$$P_{C,t}(j) = P_{e,t} C_{e,t}(j) + P_{q,t} C_{q,t}(j)$$

$$C_t(j) := \left((1 - \chi_c)^{1-\sigma} C_{q,t}(j) + \chi_c^{1-\sigma} C_{e,t}(j)\right)^{\frac{1}{\sigma}}$$
Optimal Expenditure Allocation

Household’s Optimal Expenditure Allocation

\[\max_{C_q,t, C_e,t} P_{c,t} C_t(j) \]

subject to

\[P_{c,t} C_t(j) = P_{e,t} C_{e,t}(j) + P_{q,t} C_{q,t}(j) \]

\[C_t(j) := \left((1 - x_c)^{1 - \sigma} C_{q,t}(j) + x_c^{1 - \sigma} C_{e,t}(j) \right)^{\frac{1}{\sigma}} \]

\[P_{c,t} = \left((1 - x_c) P_{q,t}^{\frac{\sigma}{\sigma-1}} + x_c P_{e,t}^{\frac{\sigma}{\sigma-1}} \right)^{\frac{\sigma-1}{\sigma}} \]

\[C_{q,t}(j) = (1 - x_c) \left(\frac{P_{q,t}}{P_{c,t}} \right)^{\frac{1}{\sigma-1}} C_t(j) \]

\[C_{e,t}(j) = x_c \left(\frac{P_{e,t}}{P_{c,t}} \right)^{\frac{1}{\sigma-1}} C_t(j) \]
Household

\[
\max E_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t(j), L_t(j)) \right], \quad 0 < \beta < 1
\]

subject to

\[
P_{c,t} C_t(j) + P_{k,t} I_t(j) + B_t(j) \leq (1 + i_{t-1}) B_{t-1}(j) + W_t(j) L_t(j) + D_t + r_t^k P_{k,t} K_t(j) + T_t
\]
Household

\[\text{Problem} \]

\[
\max_{\mathbb{E}_0} \left[\sum_{t=0}^{\infty} \beta^t U(C_t(j), L_t(j)) \right], \quad 0 < \beta < 1
\]

subject to

\[
P_{c,t} C_t(j) + P_{k,t} I_t(j) + B_t(j) \leq (1 + i_{t-1}) B_{t-1}(j) + W_t(j) L_t(j) + D_t + r^k_t P_{k,t} K_t(j) + T_t
\]

\[
U(C_t(j), L_t(j)) = \log(C_t(j)) - \frac{L_t(j)^{1+\phi}}{1+\phi}
\]
Household

Problem

\[\max \mathbb{E}_0 \left[\sum_{t=0}^{\infty} \beta^t U(C_t(j), L_t(j)) \right], \quad 0 < \beta < 1 \]

s. t

\[P_{c,t}C_t(j) + P_{k,t}I_t(j) + B_t(j) \leq (1 + i_{t-1})B_{t-1}(j) + W_t(j)L_t(j) + D_t + r_t^k P_{k,t}K_t(j) + T_t \]

\[U(C_t(j), L_t(j)) = \log(C_t(j)) - \frac{L_t(j)^{1+\phi}}{1+\phi} \]

\[I_t := K_{t+1} - (1 - \delta)K_t \]
Household's Optimization

1 = \beta E_t \left[(1 + i_t) \frac{C_t}{C_{t+1}} \frac{P_{c,t}}{P_{c,t+1}} \right]

Euler

First Order Conditions

Fisher

\frac{W_t}{P_{c,t}} = C_t L_{t}^{\phi}

1 = \beta E_t \left[\frac{C_t}{C_{t+1}} \frac{P_{c,t}}{P_{c,t+1}} \frac{P_{k,t+1}}{P_{k,t}} (r_{t+1}^{k} + 1 - \delta) \right]
The Labor "Packer"

Labor "Packer"
The Labor "Packer"

Household labor service $j \in [0, 1]$

Labor "Packer"
Household labor service $j \in [0, 1]$

\[L_t^d := \left(\int_0^1 L_t(j) \frac{e_w - 1}{e_w} \, dj \right) \frac{e_w}{e_w - 1} \]
The Labor "Packer"

Household labor service $j \in [0, 1]$

$L^d_t := \left(\int_0^1 L_t(j) \frac{\epsilon_w - 1}{\epsilon_w} \, dj \right) \frac{\epsilon_w}{\epsilon_w - 1}$

ϵ_w: the elasticity of substitution among tips of labor
Labor "Packer" Problem

Labor "Packer" Profit Optimization

\[
\max_{L_t(j)} W_t L_t^d - \int_0^1 W_t(j) L_t(j) \, dj
\]

\[L_t^d = \left(\int_0^1 L_t(j) \frac{1}{\epsilon_w} \, dj \right)^{\frac{\epsilon_w}{\epsilon_w - 1}}
\]

\[L_t(j) = \left(\frac{W_t(j)}{W_t} \right)^{-\epsilon_w} L_t^d
\]

\[W_t = \left(\int_0^1 W_t^{1-\epsilon_w}(j) \, dj \right)^{\frac{1}{1-\epsilon_w}}
\]
Wage Optimization

Wage Maximization (at each date t) (Calvo Setting)

\[W_t(j) = W_{t-1}(j) \quad \text{and} \quad W_t(j) = W_t^o(j) \]

\[W_t = (\theta_w W_{t+1}^{1-\epsilon_w} + (1 - \theta_w) W_t^{o1-\epsilon_w}) \frac{1}{1-\epsilon_w} \]
Final Good Producers

Intermediate Good: $i \in [0, 1]$

$$Q_t = \left(\int_0^1 Q_t(i) \epsilon_p - 1 \epsilon_p \right) \epsilon_p \epsilon_p - 1 \epsilon_p$$: the elasticity of substitution among intermediate goods
Final Good Producers

Intermediate Good $i \in [0, 1]$

Final Good Firm

$Q_t = \left(\int_1^0 Q_t(i) \epsilon_p - \epsilon_p \right) \epsilon_p - \epsilon_p$: the elasticity of substitution among intermediate goods
Final Good Producers

Intermediate Good $i \in [0, 1]$

Final Good Firm

\[
Q_t = \left(\int_0^1 Q_t(i) \frac{\epsilon_p - 1}{\epsilon_p} \, di \right)^{\frac{\epsilon_p}{\epsilon_p - 1}}
\]
Final Good Producers

Intermediate Good $i \in [0, 1]$

Final Good Firm

\[Q_t = \left(\int_0^1 Q_t(i) \frac{\epsilon_p - 1}{\epsilon_p} \, di \right)^{\frac{\epsilon_p}{\epsilon_p - 1}} \]

ϵ_p: the elasticity of substitution among intermediate goods
Final Good Firm Profit Optimization

\[
\max_{Q_t(i)} P_{q,t} Q_t - \int_0^1 P_{q,t}(i) Q_t(i) di \\
\text{s. t.} \\
Q_t = \left(\int_0^1 Q_t(i) \frac{\epsilon_p - 1}{\epsilon_p} di \right)^{\frac{\epsilon_p}{\epsilon_p - 1}}
\]

\[
Q_t(i) = \left(\frac{P_{q,t}(i)}{P_{q,t}} \right)^{-\epsilon_p} Q_t
\]

\[
P_{q,t} = \left(\int_0^1 P_{q,t}(i)^{1-\epsilon_p} di \right)^{\frac{1}{1-\epsilon_p}}
\]
Intermediate Good Firms’ CES Production Function

Intermediate Firms
Intermediate Good Firms’ CES Production Function

\[Q_t(i) := (x_p(A_{E_t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_{t(i)}^\alpha L_t^{d(i)}(1-\alpha))^\rho)^{1/\rho} \]

\[\rho = \frac{\eta_p - 1}{\eta_p} \]
Intermediate Good Firms’ CES Production Function

\[Q_t(i) := (x_p(A_{E,t} E_t(i))^\rho + (1-x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^\rho)^{1/\rho} \]

\[\rho = \frac{n_p - 1}{n_p} \]
Intermediate Good Firms’ CES Production Function

\[Q_t(i) := (\chi_P(A_{E,t}E_t(i))^\rho + (1 - \chi_P)(A_{L,K,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^{\rho})^{1/\rho} \]

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)

Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)

Strategy of firm \(i \)
Intermediate Good Firms’ CES Production Function

\[Q_t(i) := (x_p(A_{E,t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^\rho)^{1/\rho} \]

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)
Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)

\(\rho = \frac{\eta_p - 1}{\eta_p} \)

Given: prices and quantities
Choses: \(P_{q,t}(i) \)
Intermediate Good Firms

Intermediate Firms
Intermediate Good Firms

\[Q_t(i) := (x_p(A_{E,t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^\rho)^{1/\rho} \]

\[\rho = \frac{\eta_p - 1}{\eta_p} \]
Intermediate Good Firms

\[Q_t(i) := (x_p(A_{E,t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^\rho)^{1/\rho} \]

\[\rho = \frac{\eta_p - 1}{\eta_p} \]

strategy of firm \(i\)
Goals

Special Features

Estimation

Impulse Response Functions

Intermediate Good Firms

Intermediate Firms

\[Q_t(i) := (x_p (A_{E,t} E_t(i))^\rho + (1 - x_p) (A_{L_K,t} (K_t(i)^\alpha L_t^d(i)^{1-\alpha}))^{\rho})^{1/\rho} \]

\[\rho = \frac{\eta_p - 1}{\eta_p} \]

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)

Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)

strategy of firm \(i \)

cost minimization
Intermediate Good Firms

\[Q_t(i) := (x_p(A_{E,t}E_t(i))^\rho + (1 - x_p)(A_{LK,t}(K_t(i)^\alpha L_t^d(i)^{1-\alpha})))^{\frac{1}{\rho}} \]

Given: \(P_{e,t}, P_{k,t}, W_t \) and \(Q_t(i) \)

Choses: \(E_t(i), L_t(i) \) and \(K_t(i) \)

\(\rho = \frac{\eta_p - 1}{\eta_p} \)

Given: prices and quantities

Choses: \(P_{q,t}(i) \)
Cost Minimization

Cost minimization

\[MC_t := P_{e,t} \cdot \frac{x_p A_{E,t}^\rho Q_t(i)^{1-\rho} E_t(i)^\rho-1}{1 - \rho} \]

\[= \frac{W_t}{(1 - \alpha)Q_t(i)^{1-\rho}(1-x_p)A_{LK,t}^\rho K_t(i)^{\alpha \rho} L_t^d(i)(1-\alpha)^\rho-1} \]

\[= \frac{r_t^k P_{k,t} A_{LK,t}^\rho K_t(i)^{\alpha \rho-1} L_t^d(i)(1-\alpha)^\rho}{1 - \rho} \]

\[cost(Q_t(i)) = MC_t Q(i) \]
Price Optimization

Price Maximization (at each date t) (Calvo Price Setting)

\[P_{q,t}(i) = P_{q,t-1}(i) \]

\[P_{q,t}(i) = P_{q,t}(i) \]

\[P_{q,t} = \left(\theta_p P_{q,t-1}^{1-\epsilon_p} + (1 - \theta_p) P_{q,t}^{1-\epsilon_p} \right) \]
Calvo Price Setting

\[P_{q,t}(i) = P_{q,t-1}(i) \]

\[P_{q,t}(i) = P_{q,t}^o(i) \]

\[P_{q,t} = (\theta P_{q,t-1}^{1-\epsilon} + (1 - \theta)(P_{q,t}^o)^{1-\epsilon})^{\frac{1}{1-\epsilon}} \]
Calvo Price Setting Problem

\[
\max_{P_{q,t}(i)} E_t \left[\sum_{k=0}^{\infty} \theta^k d_{t,t+k} \left[P_{q,t}(i) Q_{t,t+k}(i) - \text{cost}(Q_{t,t+k}(i)) \right] \right]
\]

s.t

\[
Q_{t,t+k}(i) = \left(\frac{P_{q,t}(i)}{P_{q,t+k}} \right)^{-\epsilon} Q_{t+k}, \quad \forall k \geq 0
\]
Calvo Price Setting

Calvo Price Setting Solution

\[\mathbb{E}_t \left[\sum_{k=0}^{\infty} \theta_p^k d_{t+k} Q_{t+k}^o \left(P_{q,t}^o - M^p m c_{t+k}^o \right) \right] = 0 \]

\[d_{t,t+k}(j) := \beta^k \frac{\lambda_{t+k}(j)}{\lambda_t(j)} \]

\[M_{t+k}^{o} := M_{t+k} \]

\[Q_{t+k}^o := \left(\frac{P_{q,t}^o}{P_{q,t+k}^o} \right)^{-\epsilon_p} Q_{t+k} \]
Government
Government

\[1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_\pi} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \]
1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_{\pi}} \left(\frac{Y_t}{Y} \right)^{\phi_{y}} \epsilon_{i,t}

\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}}

ln(\epsilon_{i,t}) = \rho_i ln(\epsilon_{i,t-1}) + e_{i,t}
1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_\pi} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \\

\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}} \\

(1 + i_{t-1})B_{t-1} + G_t = B_t + T_t \\

\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t}
Government

\[\ln(G_{r,t}) = (1 - \rho_g)(\ln(\omega Q)) + \rho_g \ln(G_{r,t-1}) + \rho_{alk,g} e_{alk,t} + \rho_{ae,g} e_{ae,t} + e_{g,t} \]

\[1 + i_t = \frac{1}{\beta} (\Pi_{q,t})^{\phi_{\pi}} \left(\frac{Y_t}{Y} \right)^{\phi_y} \varepsilon_{i,t} \]

\[\Pi_{q,t} := \frac{P_{q,t}}{P_{q,t-1}} \]

budget constraint

\[(1 + i_{t-1})B_{t-1} + G_t = B_t + T_t \]

spending function

\[\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t} \]
Shocks

Government Spending Shock

\[
\ln(G_{r,t}) = (1 - \rho_g)(\ln(\omega Q)) + \rho_g \ln(G_{r,t-1}) \\
+ \rho_{alk,g} e_{alk,t} + \rho_{ae,g} e_{ae,t} + e_{g,t}
\]
Shocks

Government Spending Shock

\[
\ln(G_{r,t}) = (1 - \rho g) \ln(\omega Q) + \rho g \ln(G_{r,t-1}) \\
+ \rho_{alk,g} e_{alk,t} + \rho_{ae,g} e_{ae,t} + e_{g,t}
\]

Monetary Policy

\[
1 + i_t = \frac{1}{\beta} (\Pi_q,t) \phi_\pi \left(\frac{Y_t}{Y} \right) \phi_y \varepsilon_{i,t}
\]

\[
\ln(\varepsilon_{i,t}) = \rho_i \ln(\varepsilon_{i,t-1}) + e_{i,t}
\]
Shocks

\[S_{e,t} := \frac{P_{e,t}}{P_{q,t}} \]

\[\log(S_{e,t}) = \rho_{s,e} \log(S_{e,t-1}) + e_{se,t} \]
Shocks

Oil Price

\[S_{e,t} := \frac{P_{e,t}}{P_{q,t}} \]

\[\log(S_{e,t}) = \rho_{s,e} \log(S_{e,t-1}) + e_{se,t} \]

Capital Price

\[S_{k,t} := \frac{P_{k,t}}{P_{q,t}} \]

\[\log(S_{k,t}) = \rho_{s,k} \log(S_{k,t-1}) + e_{sk,t} \]
Shocks

\[\ln(A_{LK,t}) = \rho_a \ln(A_{LK,t-1}) + e_{alk,t} \]
Shocks

TFP

\[\ln(A_{LK,t}) = \rho_a \ln(A_{LK,t-1}) + e_{alk,t} \]

Oil Productivity

\[\ln(A_{E,t}) = \rho_a \ln(A_{E,t-1}) + e_{ae,t} \]
Other Shocks

Price Markup

\[\varepsilon_{p,t} = \rho_p \varepsilon_{p,t-1} + e_{p,t} - \nu_p e_{p,t-1} \]

Wage Markup

\[\varepsilon_{w,t} = \rho_w \varepsilon_{w,t-1} + e_{w,t} - \nu_w e_{w,t-1} \]
Definition of Equilibrium

Equilibrium
Definition of Equilibrium

Agents maximize its problems

- All markets clear
- Equilibrium
- Government budget constraint fulfilled
Data

<table>
<thead>
<tr>
<th>Observed Variable</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cqobs</td>
<td>$detrend\left(ln\left(\frac{PCE - PCE_{energy}}{GDPDEF} \right) \right) * 100$</td>
</tr>
<tr>
<td>invobs</td>
<td>$detrend\left(ln\left(\frac{PFI}{GDPDEF} \right) \right) * 100$</td>
</tr>
<tr>
<td>yobs</td>
<td>$detrend\left(ln\left(\frac{GDPC09}{LNSIndex} \right) \right) * 100$</td>
</tr>
<tr>
<td>wrobs</td>
<td>$detrend\left(ln\left(\frac{Hourlycompensation}{LNSIndex} \right) \right) * 100$</td>
</tr>
<tr>
<td>labobs</td>
<td>$ln\left(\frac{AveragehoursCE16OVIndex}{LNSIndex} \right) * 100 - mean\left(ln\left(\frac{AveragehoursCE16OVIndex}{LNSIndex} \right) \right) * 100$</td>
</tr>
<tr>
<td>infobs</td>
<td>$ln\left(\frac{GDPDEF}{GDPDEF(-1)} \right) * 100 - mean\left(ln\left(\frac{GDPDEF}{GDPDEF(-1)} \right) \right) * 100$</td>
</tr>
<tr>
<td>iobs</td>
<td>$(ln(1 + \frac{FEDFUND}{400}) - mean(ln(1 + \frac{FEDFUND}{400}))) * 100$</td>
</tr>
<tr>
<td>eobs</td>
<td>$ln\left(\frac{TotalSAOil}{LNSIndex} \right) * 100 - mean\left(ln\left(\frac{TotalSAOil}{LNSIndex} \right) \right) * 100$</td>
</tr>
</tbody>
</table>
No Ponzi Scheme

Transversality condition (no Ponzi Scheme)

\[
\lim_{k \to \infty} \mathbb{E}_t \left(\frac{B_{t+k}}{t+k-1} \prod_{s=0}^{t+k-1} \left(1 + i_{s-1}\right) \right) \geq 0, \quad \forall t.
\]
Calibrated Parameters

<table>
<thead>
<tr>
<th>Elasticty</th>
<th>α_e</th>
<th>0.013</th>
<th>0.07</th>
<th>0.1</th>
<th>0.3</th>
<th>0.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>η_p</td>
<td>0.05</td>
<td>0.135</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table: Set of starting values