Experience and market curves to analyze energy technology subsidies

Schuyler Matteson, Eric Williams
Rochester Institute of Technology

Seth Herron
WSP Environment & Energy
Subsidizing Energy Technologies

Governments around the world subsidize energy technologies:

• Research and Development
• Adoption – e.g. capital investment credit, Feed-in-Tariff

Why should governments subsidize?

• Technology currently brings externality benefits ≥ subsidy cost.
• Technology will improve and become cost-competitive, or at least to ≥ externality benefit.
• Encourage new competitive export industry.
Decision-making and Energy Subsidies

• How do governments decide:
 – Which technologies get subsidized?
 – How to subsidize?
 – When to stop?
• Apparently, heuristically and politically driven
• Need for analytical tools to support subsidy decision-making
Role of subsidy in diffusion

Successful diffusion =

Econ. Viability + Bribe + Persuasion + Education

“Core” subsidy

Supplemental subsidy, outreach, marketing programs
Cascading Diffusion Model for Market Activation

Experience curve for reduction in production costs

Willingness to pay in different sub-markets

Cumulative production of technology

Cost of Production

Public subsidy to stimulate diffusion

A – market activation
B – market saturation

Herron and Williams, Env. Sci Tech (2013)
Case Study of Cascading diffusion: Plug-in Hybrid Vehicles in the U.S.

• PHEVs are expensive to buy, e.g. Chevy Volt costs ~ $34,000, compare with Toyota Camry at $23,000
• PHEV saves running costs: $ electricity/mile cheaper than gas $/mile, high mpg in gas mode (since hybrid)
• Largest part of extra cost is lithium battery - $7,000. Batteries are getting cheaper.
Case Study of Cascading diffusion: Plug-in Hybrid Vehicles in the U.S.

Research questions:
• Can subsidies activate larger markets for PHEV?
• If yes, what is net cost of subsidy after “free” diffusion?

• Preliminary results
Experience Curve for Plug-in Hybrids

\[\Delta \text{Cost}_{\text{PHEV}}(P) = 4000 + 7000(P/P_0)^{-\alpha} \]

- \(\Delta \text{Cost}_{\text{PHEV}} \) is cost premium of PHEV over similar conventional gasoline vehicle
- \(P \) is cumulative production, \(P_0 = 71,000 \) cars
- \$4,000 is “incompressible” cost, mainly electric motors (assume no tech. progress)
- \$7,000 is current Lithium battery price
- Two learning rates (LR):
 - High Learning, historical progress for Li batteries for consumer electronics LR = 22%, \(\alpha = 0.41 \)
 - Low Learning, IEA report, LR = 9.5%, \(\alpha = 0.15 \)
Experience Curve for Lithium Batteries in consumer electronics: 1993-2005

\[- \text{Cost}\ (P) = C_0 \times (P/P_0)^{-\alpha} = 600\ $/kW (P/2.3\ million\ kWh)^{-0.41}\]

Learning rate = 22%, \(\alpha = 0.41 \)
Market curves

• Analyzing “core” subsidy, so treat plug-in hybrid market as purely economic decision (PHEV vs. conventional vehicle)

• Market drivers are heterogeneous:
 – Geographical: state variability in gasoline and electricity prices
 – Individual: driving patterns vary, in particular annual miles driven.
Willingness-to-Pay (WTP)

- WTP = Net Present Value (Annual savings, 10% discount rate, 10 years)
- Annual savings = Gasoline cost for conventional vehicle (30 mpg) – (PHEV electricity (3 miles/kWh) + PHEV gasoline (40 mpg))
- Miles per day = annual miles/365
- If Miles per day < 40, all electricity
- If miles per day > 40, use some gasoline
WTP \(\rightarrow \) Market Curve

- Use micro-level individual data for annual miles driven from the National Household Transportation Survey (~300,000 responses)
- Based on state of residence, use state-specific electricity and gasoline prices
- Bin WTP into 50 different cohorts, then order from highest to lowest
- Assume potential adoption of 1 PHEV per vehicle purchaser
• Current price differential = $11,000, $7,500 subsidy enough to make NPV > 0 for ~ 80 million drivers.
• Why slow growth in adoption? $/mile is contributor, not determinant of consumer utility derived from vehicle (limited model choices big factor?)
• High learning: after 220,000 PHEVs on the road, NPV >0 for 68 million consumers until saturation
• Low learning: after 2.1 million PHEVs on the road, NPV >0 for 31 million consumer until saturation
Policy costs

- Constant subsidy: $7,500 until market activation
- Continuously tapered subsidy: follows experience curve until market activation

Subsidy cost per vehicle = \[
\frac{\text{Total cost}}{\text{Subsidized + “Free” adoption}}
\]

<table>
<thead>
<tr>
<th></th>
<th>Low learning</th>
<th>High learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market activation</td>
<td>2.1 million</td>
<td>220,000</td>
</tr>
<tr>
<td>Market saturation</td>
<td>31 million</td>
<td>68 million</td>
</tr>
<tr>
<td>Total subsidy cost</td>
<td>$1.3-$16 billion</td>
<td>$210 million – $1.6 billion</td>
</tr>
<tr>
<td>Subsidy per vehicle</td>
<td>$44-520</td>
<td>$3-21</td>
</tr>
</tbody>
</table>
Uncertainty

Results are sensitive to:

• Value of learning rate
• Gasoline and electricity prices
• Mpg of competing conventional vehicle

Governments need to measure learning rates as part of subsidy programs.
• Expensive gas makes economically attractive even with low learning
• Technology is a non-starter if gasoline becomes cheap (relative to electricity)
International Cascading Diffusion: Residential Solid Oxide Fuel Cells
So What?

- Cascading diffusion model informs necessary (if not sufficient) condition of economic viability
- Unfavorable learning rate and/or energy prices can lead to “no-go” decision for subsidy
- Should be part of larger modeling/data framework to plan energy technology subsidies.
- Dock with bribe, persuasion and/or education to achieve diffusion
- Potential for international cooperation (or at least information exchange) on energy technology subsidies.
Thank you for your attention!

This research was supported by the National Science Foundation, Environmental Sustainability Program.

exwgis@rit.edu

Letchworth State Park, near Rochester, New York
Variability of Saturation adoption with gas and electricity prices

![Graph showing the variability of saturation adoption with gas and electricity prices. The graph plots total adoption of PHEV on the y-axis against electricity price relative to current on the x-axis and gas price per gallon on the z-axis. The graph illustrates how changes in gas and electricity prices affect the total adoption of PHEVs.]