An Agent-based Modeling Approach to Non-equilibrium Dynamics Of Natural Gas Supply Shock Propagation

Alexander Outkin,
with Vanessa Vargas, Peter H. Kobos, Melissa Myerly, Garret Barter, Len Malczynski

Sandia National Laboratories

37th Annual IAEE Conference, June 16, 2014
Presentation Overview

• Model Development
 • Gas Allocation Model (GAM, an existing network model) – short term disruption, find equilibrium “stress” levels
 • Natural Gas System Model (NGSM) – long term systemic shock, understand system dynamics. Agent-Based Network Model.

• NGSM Model Calibration
 • Individual nodes: supply, demand, pipeline capacity
 • Market partition into sub-markets

• Results
 • (Sub)-market equilibrium price
 • Effects of additional demand, such as LNG

• Future Work
 • Add in heterogeneous agent behavior
 • Explore agent interactions and emerging behaviors
GOALS and APPROACH

GOAL: Understand the long term evolution of the Natural Gas (NG) system

• Create dis-equilibrium model of the NG system evolution
• Understand the system transition to new steady state

APPROACH: Agent-based modeling (ABM) on networks

• Represent agents behaviors and drivers of system evolution
• Calibrate to real-world data
High Level NGSM Description

System changes: LNG, GTL

System adaptation

More supply

NG network dynamics

+ New supply

+ New demand
What Is Agent-Based Modeling?

• ABMs are used for representing complex real-world systems

• Agents are autonomous decision-making entities

• Agent interactions are situated in appropriate environment and interaction structure.
 • Agents produce, consume, trade securities, ship freight, and so forth.

• The dynamics of systems emerge from large numbers of interactions among heterogeneous agents.
NGSM Scenario Example

- **Industry Effects**
 - Transportation
 - LNG HD Vehicle
 - GTL
 - Compressed NG
 - Industry
 - NG -> Electric Power
 - Chemicals
 - Manufacturing
 - Heat

- **NG Effects**
 - NG Price
 - NG Supply
 - NG Pipeline Network

Affects economics of GTL and other NG uses
Affects economics of transportation and industrial uses
Highlights of our Approach

• Combine future projections, detailed system data, and agent-based behavior to produce an agile modeling tool
• Behaviors will be real-world and data-driven, rules of thumb, and agent learning
• Use heterogeneous behaviors of agents to tease out emerging behaviors or unexpected consequences
• **Goal:** evaluate the effects of system operator and regulator decisions and system shocks and constraints to inform strategy and policy options
NGSM Data Calibration

- Calibrated to GPCM (commercial software, created by RBAC) data released in Q1 2014
- Demand Nodes and curves
 - 660 demand nodes: Generation, Industrial, Consumer
- Supply nodes and curves
 - 102 supply nodes: Conventional, Shale, CBM
- **Result**: increase fidelity/confidence of our NGSM model
Model Calibration

Data

Compare

Predicted output

Data for calibration

Calibration:
- Optimization
- Learning

Serve as a basis for calibration

Create calibrated model

Run Model

NGSM Agent-Based and Theoretical Model

NGSM Calibrated model
Sub-Market Price Determination

• Find an equilibrium price for supply and demand on the aggregate NG network
 • Initially with no storage or seasonality
 • Then incorporate monthly data (seasonality)
• If equilibrium price cannot be achieved, split the aggregate market into sub-markets
 • Sub-market own price
• **Outcome**: Use Edmonds-Karp algorithm to determine the max-flow on the network for a given equilibrium or sub-market price
Edmonds-Karp Algorithm Application to NGSM

- Production or consumption numbers are used by Edmonds-Karp Algorithm to determine assignments of flows to appropriate pipelines.
- If any pipeline is at max-capacity, then global market equilibrium price cannot be achieved.
- **Solution**: Split the network into sub-networks, known as sub-markets, repeat as needed.
Results – Equilibrium Price

<table>
<thead>
<tr>
<th>Month</th>
<th>Base case Price (dollars per thousand cf)</th>
<th>Largest subnet</th>
<th>Additional demand Price (dollars per thousand cf)</th>
<th>Largest subnet</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/2014</td>
<td>5.70</td>
<td>703</td>
<td>8.34</td>
<td>709</td>
</tr>
<tr>
<td>5/2020</td>
<td>6.68</td>
<td>679</td>
<td>8.88</td>
<td>683</td>
</tr>
<tr>
<td>5/2025</td>
<td>6.56</td>
<td>663</td>
<td>9.28</td>
<td>672</td>
</tr>
</tbody>
</table>

Scenario 1: Base case, no changes to the system

Scenario 2: Addition of LNG terminal at Sabina Pass at 15% of total system demand
In Summary

- **Adapted** an existing NG network model to our NGSM framework
- **Enabled** market price determination on a network and sub-networks
- **Developed** an ABM modeling framework to represent the effects of regulatory decisions
- **Conclusion:** Heterogeneous agent behavior is central to understanding the effects and unintended consequences of regulatory policy
Future work

• Future Work
 • Peer review of the model and the approach
 • Agent behaviors – actions, interactions, and emerging behaviors (partially represented)
 • New node types – LNG (partially represented), vehicle transportation, and chemical manufacturing
 • Seasonality – to increase variation in output and agent interactions
Thank you!
NG Prices for Calibration

Natural Gas Prices
(Dollars per Thousand Cubic Feet, except where noted)

<table>
<thead>
<tr>
<th>Area</th>
<th>Wellhead Price</th>
<th>Imports Price</th>
<th>By Pipeline</th>
<th>As Liquefied Natural Gas</th>
<th>Exports Price</th>
<th>By Pipeline</th>
<th>As Liquefied Natural Gas</th>
<th>Citygate Price</th>
<th>Residential Price</th>
<th>Percentage of Total Residential Deliveries included in Prices</th>
<th>Commercial Price</th>
<th>Percentage of Total Commercial Deliveries included in Prices</th>
<th>Industrial Price</th>
<th>Percentage of Total Industrial Deliveries included in Prices</th>
<th>Electric Power Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>NA</td>
<td>3.60</td>
<td>3.73</td>
<td>8.65</td>
<td>4.22</td>
<td>4.22</td>
<td>13.38</td>
<td>5.74</td>
<td>14.57</td>
<td>94.9</td>
<td>9.09</td>
<td>59.3</td>
<td>4.51</td>
<td>16.3</td>
<td>4.56</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3.41</td>
<td>3.37</td>
<td>4.59</td>
<td>3.94</td>
<td>3.93</td>
<td>12.89</td>
<td>5.53</td>
<td>16.30</td>
<td></td>
<td>8.99</td>
<td>57.9</td>
<td>4.50</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3.17</td>
<td>3.01</td>
<td>7.42</td>
<td>3.75</td>
<td>3.75</td>
<td>13.25</td>
<td>5.23</td>
<td>16.44</td>
<td></td>
<td>9.07</td>
<td>57.0</td>
<td>4.34</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3.48</td>
<td>3.01</td>
<td>9.96</td>
<td>3.88</td>
<td>3.88</td>
<td>13.53</td>
<td>5.20</td>
<td>15.69</td>
<td></td>
<td>8.80</td>
<td>57.4</td>
<td>4.36</td>
<td>16.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3.4</td>
<td>3.34</td>
<td>5.79</td>
<td>3.88</td>
<td>3.88</td>
<td>13.69</td>
<td>4.68</td>
<td>12.48</td>
<td></td>
<td>8.34</td>
<td>61.3</td>
<td>4.39</td>
<td>16.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>3.78</td>
<td>3.77</td>
<td>4.52</td>
<td>3.88</td>
<td>3.88</td>
<td>14.21</td>
<td>4.77</td>
<td>10.10</td>
<td></td>
<td>7.95</td>
<td>66.2</td>
<td>4.63</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Source: EIA