Masters Hypothesis and Market Efficiency - Insights from Multifractal Models

Marc Gronwald*
Cristina Sattarhoff**

*University of Aberdeen Business School, ifo Institute and CESifo
**University of Hamburg

37th IAEE International Conference

Masters Hypothesis and Market Efficiency
This paper

- Financialization of Oil Futures Markets 2003-2008

Masters Hypothesis and Market Efficiency
This paper

- Financialization of Oil Futures Markets 2003-2008
 - Assets allocated to commodity index trading strategies rose from $13 billion in 2004 to $317 billion as of July 2008 (Masters and White, 2008)
This paper

- **Financialization of Oil Futures Markets 2003-2008**
 - Assets allocated to commodity index trading strategies rose from $13 billion in 2004 to $317 billion as of July 2008 (Masters and White, 2008)
 - Prices for various commodities that make up these indices have risen by an average of over 200%.
This paper

- Financialization of Oil Futures Markets 2003-2008
 - Assets allocated to commodity index trading strategies rose from $13 billion in 2004 to $317 billion as of July 2008 (Masters and White, 2008)
 - Prices for various commodities that make up these indices have risen by an average of over 200%.

- Financialization caused oil price hike 2008
This paper

- Financialization of Oil Futures Markets 2003-2008
 - Assets allocated to commodity index trading strategies rose from $13 billion in 2004 to $317 billion as of July 2008 (Masters and White, 2008)
 - Prices for various commodities that make up these indices have risen by an average of over 200%.
- Financialization caused oil price hike 2008
- Masters and White (2008): introduction of (speculative) position limits
This paper

- Financialization of Oil Futures Markets 2003-2008
 - Assets allocated to commodity index trading strategies rose from $13 billion in 2004 to $317 billion as of July 2008 (Masters and White, 2008)
 - Prices for various commodities that make up these indices have risen by an average of over 200%.

- Financialization caused oil price hike 2008

- Masters and White (2008): introduction of (speculative) position limits
 - "The case for position limits therefore lacks a logical or empirical basis. As a result, such limits are highly unlikely to lead to more efficient pricing in commodity markets." (Pirrong, 2010)
Market efficiency

Prior to 2003: lower degree of market efficiency?
Market efficiency

- Prior to 2003: lower degree of market efficiency?
- Application of a newly developed quantitative market efficiency measure
Market efficiency

- Prior to 2003: lower degree of market efficiency?
- Application of a newly developed quantitative market efficiency measure
- Efficient market hypothesis (EMH), Fama (1970)
Market efficiency

- Prior to 2003: lower degree of market efficiency?
- Application of a newly developed quantitative market efficiency measure
- Efficient market hypothesis (EMH), Fama (1970)
- Current prices can reflect all historical publicly available information (weak form)
Market efficiency

- Prior to 2003: lower degree of market efficiency?
- Application of a newly developed quantitative market efficiency measure
- Efficient market hypothesis (EMH), Fama (1970)
- Current prices can reflect all historical publicly available information (weak form)
- Serial correlation of asset returns as sign of predictability and, thus, market inefficiency
Empirical approach

- Multifractal random walk model
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
- Multifractality-based measures: Zunino et al. (2008) and Sattarhoff (2011)
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
- Multifractality-based measures: Zunino et al. (2008) and Sattarhoff (2011)
- Qualitative vs. quantitative
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
- Multifractality-based measures: Zunino et al. (2008) and Sattarhoff (2011)
- Qualitative vs. quantitative
- Random Walks and Market Efficiency
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
- Multifractality-based measures: Zunino et al. (2008) and Sattarhoff (2011)
- Qualitative vs. quantitative
- Random Walks and Market Efficiency
- Comparisons across markets
Empirical approach

- Multifractal random walk model
- Intermittency parameter λ^2
- Measure of degree of market efficiency (Campbell et al., 1997)
- Multifractality-based measures: Zunino et al. (2008) and Sattarhoff (2011)
- Qualitative vs. quantitative
- Random Walks and Market Efficiency
- Comparisons across markets
- Estimation using rolling sample windows
Related literature

- Kilian and Murphy (2013): The 2003-2008 surge was caused by unexpected increases in world oil consumption driven by the global business cycle.
- Juvenal and Petrella (2014): Global demand shocks account for the largest share of oil price fluctuations, speculative shocks are the second most important driver.
Related literature

- Kilian and Murphy (2013): The 2003-2008 surge was caused by unexpected increases in world oil consumption driven by the global business cycle.
- Juvenal and Petrella (2014): Global demand shocks account for the largest share of oil price fluctuations, speculative shocks are the second most important driver.
- Buhuksayin and Harris (2011): Position changes of commercial, non-commercial, and swap dealers do not Granger cause oil price changes.
- Irwin and Sanders (2012): Relationship between index positions and returns as well as volatility - no empirical support for the Masters Hypothesis
Multifractality

- Returns with different time periods differ in their probability distribution
Multifractality

- Returns with different time periods differ in their probability distribution
- Interrelation between returns and sampling intervals: Multifractility
Multifractality

- Returns with different time periods differ in their probability distribution
- Interrelation between returns and sampling intervals: Multifractility
- Absolute moments of returns vary as a power of the return period, with non-linear exponent as a function of the moment order
Multifractal random walk

- Originally proposed by Muzy and Bacry (2002) and Bacry et al. (2001, 2008)
Multifractal random walk

- Originally proposed by Muzy and Bacry (2002) and Bacry et al. (2001, 2008)
- Parsimonious framework for modelling multifractal volatility
- Three parameters: error term variance σ^2, correlation lag T, intermittency coefficient λ^2
Multifractal random walk

- Originally proposed by Muzy and Bacry (2002) and Bacry et al. (2001, 2008)
- Parsimonious framework for modelling multifractal volatility
- Three parameters: error term variance σ^2, correlation lag T, intermittency coefficient λ^2
- λ^2: measure of strength of interrelation between returns and sampling intervals
Multifractal random walk

- Originally proposed by Muzy and Bacry (2002) and Bacry et al. (2001, 2008)
- Parsimonious framework for modelling multifractal volatility
- Three parameters: error term variance σ^2, correlation lag T, intermittency coefficient λ^2
- λ^2: measure of strength of interrelation between returns and sampling intervals
- λ^2 serves as measure of market efficiency (Sattarhoff, 2011; Sattarhoff, 2012)
Multifractal random walk

This paper: log-normal model version

\[X(t) = \lim_{l \to 0^+} \int_0^t e^{\omega_l(u)} dB(u) \]

(1)

where \(dB(u) \) is Gaussian White Noise, and \(\omega_l(t) \) is a stationary Gaussian process independent of \(dB(u) \), with mean

\[E(\omega_l(t)) = -\lambda^2 \left(\ln \frac{T}{l} = 1 \right) \]

(2)

and autocovariance function

\[\gamma_{\omega_l}(h) := \text{Cov}(\omega_l(t), \omega_l(t + h)) \]

\[\gamma_{\omega_l}(h) = \begin{cases}
\lambda^2 \left(\ln \left(\frac{T}{l} \right) + 1 - \frac{h}{l} \right) & 0 \leq h < l \\
\lambda^2 \ln \left(\frac{T}{h} \right) & l \leq h < T \\
0 & h \geq T
\end{cases} \]

(3)

Masters Hypothesis and Market Efficiency
λ^2 estimates for other markets (Sattarhoff, 2012)

<table>
<thead>
<tr>
<th>Index</th>
<th>λ^2</th>
<th>Sample period</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX</td>
<td>0.0362</td>
<td>2003-2007</td>
</tr>
<tr>
<td>FTSE</td>
<td>0.0190</td>
<td>2003-2007</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0.0157</td>
<td>2003-2007</td>
</tr>
<tr>
<td>DAX</td>
<td>0.0273</td>
<td>2007-2011</td>
</tr>
<tr>
<td>FTSE</td>
<td>0.0351</td>
<td>2007-2011</td>
</tr>
<tr>
<td>Dow Jones</td>
<td>0.0492</td>
<td>2007-2011</td>
</tr>
</tbody>
</table>
Preliminary results

Figure 1: Near month crude oil futures returns

Masters Hypothesis and Market Efficiency
Preliminary results

Oil futures market: λ^2 estimates

<table>
<thead>
<tr>
<th>λ^2</th>
<th>Sample period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0225</td>
<td>Full sample</td>
</tr>
<tr>
<td>0.0214</td>
<td>Pre 2002</td>
</tr>
<tr>
<td>0.0224</td>
<td>Post 2002</td>
</tr>
</tbody>
</table>
Oil futures market: λ^2 estimates

<table>
<thead>
<tr>
<th>λ^2</th>
<th>Sample period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0225</td>
<td>Full sample</td>
</tr>
<tr>
<td>0.0214</td>
<td>Pre 2002</td>
</tr>
<tr>
<td>0.0224</td>
<td>Post 2002</td>
</tr>
</tbody>
</table>

$H_0 : \lambda^2 = 0$ rejected for all sample periods
Preliminary results

Figure 2: λ^2 estimates, rolling window, 2000 observations

Masters Hypothesis and Market Efficiency
Discussion

- Multifractality degree roughly similar to other markets
Discussion

- Multifractality degree roughly similar to other markets
- Multifractality degree post 2002 is comparable to that of the mid 1990s
Discussion

- Multifractality degree roughly similar to other markets
- Multifractality degree post 2002 is comparable to that of the mid 1990s
- The unknown counterfactual
Discussion

- Multifractality degree roughly similar to other markets
- Multifractality degree post 2002 is comparable to that of the mid 1990s
- The unknown counterfactual
- Additional tests