Fuel Subsidies, the Oil Market, and the World Economy

Nathan Balke*, Michael Plante and Mine Yücel

*Southern Methodist University
Federal Reserve Bank of Dallas

June 16, 2014
The results presented here are my own and do not necessarily reflect the official views of the Federal Reserve Bank of Dallas nor the Federal Reserve System as a whole.
Introduction

- Consumer subsidies on fuel products found in many countries
- Subsidies found in both producing and non-producing countries
- But oil producers are most important subsidizers
We explore how these subsidies qualitatively and quantitatively impact:

- World oil market
- Macroeconomic variables
- Welfare
Data

<table>
<thead>
<tr>
<th>Country</th>
<th>Country</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algeria</td>
<td>Indonesia</td>
<td>Qatar</td>
</tr>
<tr>
<td>Angola</td>
<td>Iran</td>
<td>Saudi Arabia</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Iraq</td>
<td>Sudan</td>
</tr>
<tr>
<td>Bahrain</td>
<td>Kuwait</td>
<td>Syria</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Libya</td>
<td>Turkmenistan</td>
</tr>
<tr>
<td>Brunei</td>
<td>Malaysia</td>
<td>UAE</td>
</tr>
<tr>
<td>Ecuador</td>
<td>Nigeria</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Egypt</td>
<td>Oman</td>
<td>Yemen</td>
</tr>
</tbody>
</table>

Table: Countries identified as subsidizers
Some statistics about the 24 countries:

- Consume 13.5 percent of world’s oil
- Produce 48 percent of world’s oil
- Current retail prices about 1/3 of U.S. prices (ex. tax)
Model

- Two country model with countries a and o
- Country o produces oil, represents group of subsidizers
- Country a produces oil and non-oil goods
- Countries a is a net importer of oil
Model

In country a:

- Competitive firm produces non-oil good using labor, capital, oil
- Competitive firm produces oil using non-oil good
- Household consumes oil and non-oil goods
- Household maximizes utility subject to a budget constraint
Oil production in a

Oil producing firm’s problem

\[
\max_{Y_{o,t}^a} \Pi_{o,t}^a = P_{o,t} Y_{o,t}^a - A_{y,t}^a,
\]

where

\[
A_{y,t}^a = \kappa_a \frac{(Y_{o,t}^a)^{1+\frac{1}{\eta_a}}}{1 + \frac{1}{\eta_a}}.
\]
Oil production in a

Oil producing firm’s problem

\[
\max_{Y^a_{o,t}} \Pi^a_{o,t} = P_{o,t} Y^a_{o,t} - A^a_{y,t},
\]

where

\[
A^a_{y,t} = \kappa_a \left(Y^a_{o,t} \right)^{1 + \frac{1}{\eta_a}} \frac{1 + \frac{1}{\eta_a}}{1 + \frac{1}{\eta_a}}.
\]

- Price elasticity of supply given by \(\eta_j \) for \(j = a, o \)
- Costs increasing in oil output
- Lower marginal cost as \(\eta \) increases
In country o:

- Government-run oil company produces oil using non-oil good
- Portion of oil sold domestically at subsidized price P_s (set by modeler)
- Remainder exported to country a at world price P_o
In country o:

- Oil revenues flow into economy lump-sum
- Household spends income on oil and non-oil goods
- Household maximizes utility subject to a budget constraint
Calibration

Table: Oil market variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil production in o</td>
<td>48 percent of world production</td>
</tr>
<tr>
<td>Consumption of fuel in o</td>
<td>13.5 percent of world consumption</td>
</tr>
<tr>
<td>Ratio of subsidized fuel price to world price</td>
<td>.35</td>
</tr>
<tr>
<td>Consumption-expenditure share of fuel in a</td>
<td>5 percent</td>
</tr>
<tr>
<td>Firm use of oil in a</td>
<td>2 percent of a’s GDP</td>
</tr>
<tr>
<td>Elasticities of oil demand</td>
<td>.75</td>
</tr>
<tr>
<td>Elasticity of oil supply (η_a, η_o)</td>
<td>.30</td>
</tr>
</tbody>
</table>
Exercise

- Model calibrated to recent data
- Policy experiment: Set subsidized price in all equal world price
 - Subsidies removed in all 24 countries
- Comparative statics exercise
- Calculate how variables change across steady states
Results

Percent change in variables across steady states

Prices

<table>
<thead>
<tr>
<th>Variable</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>market oil price (P_o)</td>
<td>-6.2</td>
</tr>
<tr>
<td>subsidized oil price (P_s)</td>
<td>176</td>
</tr>
</tbody>
</table>
Results

Percent change in variables across steady states

Prices
- market oil price \((P_o) \) -6.2
- subsidized oil price \((P_s) \) 176

Country a variables
- oil production \((Y_o^a) \) -1.9
- oil used in consumption \((O_c^a) \) 4.9
- oil used in production \((O_y^a) \) 4.2
- consumption of good A \((A_c^a) \) 0.004
- non-oil GDP 0.23

Country o variables
- oil production \((Y_o^o) \) -1.9
- oil consumption \((O_c^o) \) -45.9
- consumption of good A \((A_c^o) \) 15.8
- transfers / oil revenue (net) 21.4
Percent change in variables across steady states

Prices
- market oil price \((P_o)\) - 6.2
- subsidized oil price \((P_s)\) 176

Country a variables
- oil production \((Y_a^o)\) - 1.9
- oil used in consumption \((O^a_c)\) 4.9
- oil used in production \((O^a_y)\) 4.2
- consumption of good A \((A^a_c)\) 0.004
- non-oil GDP 0.23

Country o variables
- oil production \((Y_o^o)\) - 1.9
- oil consumption \((O^o_c)\) - 45.9
- consumption of good A \((A^o_c)\) 15.8
- transfers / oil revenue (net) 21.4
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

Importer's welfare gain: 0.2% of consumption
Exporter's welfare gain: 0.9% of consumption
Larger relative gains to exporter, larger absolute in importer
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption

- Exporter’s welfare gain: 0.9% of consumption
Welfare Results

- Welfare changes converted to (aggregate) consumption equivalents
 - How much do I need to change consumption in the new steady state to get utilities equal?

- Importer’s welfare gain: 0.2% of consumption

- Exporter’s welfare gain: 0.9% of consumption

- Larger relative gains to exporter, larger absolute in importer
Conclusions

- Considered impacts of fuel subsidies in a two-country model
- Calibrated model to match recent data
- Removing subsidies would lower world price of oil by about 6%
- Welfare improves in both countries
Table: Statistics about the 24 countries

<table>
<thead>
<tr>
<th>Year</th>
<th>Share of world oil consumption</th>
<th>Share of world oil production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1992</td>
<td>9.5</td>
<td>46.1</td>
</tr>
<tr>
<td>1993</td>
<td>9.9</td>
<td>47.3</td>
</tr>
<tr>
<td>1994</td>
<td>10.0</td>
<td>47.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>13.1</td>
<td>48.3</td>
</tr>
<tr>
<td>2011</td>
<td>13.4</td>
<td>48.1</td>
</tr>
<tr>
<td>2012</td>
<td>13.5</td>
<td>47.9</td>
</tr>
</tbody>
</table>

Sources: IMF, EIA
Oil production in o

The oil producer hence chooses production, $Y_{o,t}$, to maximize:

$$\Pi_{o,t} = P_{o,t}(Y_{o,t} - O_{o,c,t}) + P_{s,t}O_{c,t} - A_{y,t}$$

where the cost function is similar to country a’s:

$$A_{y,t} = \kappa_{o} \frac{(Y_{o,t})^{1+\frac{1}{\eta_{o}}}}{1 + \frac{1}{\eta_{o}}}.$$