Electricity demand 3 year time trend

Diversity index

- The recent experience in the construction of new NPP in Europe casts doubts on nuclear power competitiveness:
 - **Cost overrun** Okhlo–3 in Finland (from €3 billion to €5.4 billion) and Flamanville–3 in France (from €3.3 billion to €8.5 billion)
 - **Construction delays** 5 years in Okhlo and Flamanville–3 is delayed to 2016

The overnight construction costs from U.S and France tell us:

- **Cost overruns**: NPP in Europe casts doubts on nuclear power competitiveness:
- **Technological delays**: France (From to)

The recent experience in the construction of new reactors followed different paths in terms of:

- **Cost overruns**: the U.S → 104 reactors, 20 different models
- **Technological delays**: France → 58 reactors but only 9 models

Industrial organization:

- **Multiplicity of agents**: U.S
- **One vendor and utility**: France that acted as A-E firm

Goal of this paper

- Investigate the role of **standardization, learning effects** and **innovation** on nuclear reactors' construction costs and lead-times

Empirical Strategy

We estimated a 2SLS regression model for the construction costs and lead-times.

\[
CT_i = \alpha_0 + \alpha_1 T_i + \frac{2}{3} \alpha_2 X_i + \epsilon_i
\]

(1)

\[
LT_i = \beta_0 + \beta_1 EDem_i + \frac{2}{3} \beta_2 X_i + \epsilon_i
\]

(2)

- **Instrument** Electric demand 3 year time trend
- **Learning effects** Experience at country level
- **Standardization** Diversity index
- **Technological progress** Discounted stock of priority patents
- **Capacity**: Test existence of economies of scale
- **Country/Year fixed effects**
- **Structural breaks** after TMI and Chernobyl
- **Input prices**: Labor and Cement
- **Identify the projects in which the utility acted as A-E firm**

Result 1: Standardization benefits

- **Building the same reactor model repeatedly** will reduce the costs
- **Standardization** allows short term cost reductions through shorter lead-times.

Result 2: Technological progress

- **Technological progress** is the main driver of the cost escalation in nuclear
- **Innovations** increased the construction costs but also allowed better operating and safety performance

Result 3: Delays

- **Delays in the construction is the second explanation to the cost escalation**
- **Diversity increases the risk of delays**
- **Stricter safety regulation after TMI and Chernobyl increased the lead-times**

Conclusion

- **Standardization will reduce the construction lead-times on the short run and also will reduce costs after building the same series**
- **Regulatory stability enhances nuclear power competitiveness** by reducing the risk of delays
- **Trade-off between the economies enabled by standardization and potential gains from adopting new technologies → Optimal pace of technological change**

References

Contact Information

- **Email**: lina.escobar__rangel@mines-paristech.fr
- **Web**: http://www.cerna.ensmp.fr/index.php/fr/