How Much Do Electric Drive Vehicles Matter to Future U.S. Emissions?

Samaneh Babaee, Department of Civil, Construction, and Environmental Engineering, North Carolina State University
Ajay S. Nagpure, Hubert H. Humphrey School of Public Affairs, University of Minnesota
Joseph F. DeCarolis, Department of Civil, Construction, and Environmental Engineering, North Carolina State University

Lead author:
Name: Samaneh Babaee
Title: PhD candidate, North Carolina State University
Organization: North Carolina State University
Address: 6311 Daybrook Circle Apt 306, Raleigh, NC, 27606
Phone and email: 919-264-1744, sbabaee@ncsu.edu
How Much Do Electric Drive Vehicles Matter to Future U.S. Emissions?
Samaneh Babaei; Ajay Nagpure; Dr. Joseph DeCarolis
Department of Civil, Construction, and Environmental Engineering, North Carolina State University

Motivation
- Increasing concerns regarding anthropogenic climate change and urban air quality
- Current U.S. policies, tax credits, and incentives promote electric drive vehicles (EDVs)
- High uncertainty about the future market penetration of EDVs and their effect on emissions despite the potential benefits over competing vehicles

Electric Drive Vehicles include:

Objectives
- Identify the conditions under which EDVs achieve high market penetration in the U.S. light duty vehicle sector through mid-century
- Quantify the resultant change in CO₂, SO₂, and NOₓ emissions

Approach
Utilize a technology rich energy system model comprised of:

A Model generator (TIMES)
- Energy-economy optimization framework to identify the least-cost way to satisfy end-use demands

Input Data: National U.S. TIMES Dataset (NUSTD)
- Represents the U.S. energy system at the national scale and contains information on fuel prices; technology cost and performance estimates; and end-use demands over the next 40 years
- Transportation sector: light duty vehicles (LDV), heavy duty vehicles (HDV), and off-highway (OH) technologies
- 85 LDVs: 7 vehicle size classes, 6 fuel types, and 13 vehicle types
- EDVs: hybrid, plug-in hybrid (PHEV20 and PHEV60), and electric (BEV160)
- NUSTD is publicly available at http://www.energy-modeling.org/

Model outputs
- Optimal installed capacity and utilization by technology, equilibrium energy prices, and emissions

Scenarios
Scenario development was focused on five factors likely to affect the cost-effectiveness of EDVs relative to other vehicle technologies:
- Natural gas price
- Crude oil price
- EDV battery cost
- A federal cap on CO₂ emissions
- A federal renewable portfolio standard (RPS)

Results
- Estimated 2050 NOₓ emissions
- Estimated 2050 SO₂ emissions
- Larger bubbles indicate higher oil price
- Assumption 1
 - CO₂ policy, RPS
 - Tech Deployment
 - Emissions
- Assumption 2
 - Diesel Hybrid
 - Diesel
 - Electric
- Assumption 3
 - Diesel
 - Electric

Insights
- High oil prices and low EDV battery costs are the strongest drivers of EDV deployment.
- BEV160s and PHEV60s are the most cost-effective EDVs in the long run.
- EDV deployment produces only a small effect on system-wide CO₂, SO₂, and NOₓ emissions. Why?
 - Overall CO₂ share from the LDV sector is currently 20% of total U.S. CO₂ emissions.
 - EDV charging can still produce comparable emissions to conventional vehicles.
 - Effect of other sectors on emissions is significant.
- CO₂ cap is the strongest driver of lower CO₂, SO₂, and NOₓ emissions.
- EDVs can be a cost-effective option under a CO₂ cap.

Acknowledgement
This material is based upon work supported by the National Science Foundation under Grant No. CBET-0853766.