The climate and health effects of a USA switch from coal to gas

Roger Lueken, Kelly Klima, Mike Griffin, Jay Apt

Carnegie Mellon Electricity Industry Center (CEIC)
www.cmu.edu/electricity

IAEE NYC: June 17, 2014
The rise of natural gas

- Increased gas generation
- Gas dominates new builds

Drivers:
- Economics
- Regulations on criteria pollutants (NO_x, SO_2, PM)
 - MATS, CAIR, CSPAR

Sources: EIA, PJM
Our thought experiment

• **What would happen** if all U.S. coal plants were shut off in 2016, and were replaced with new gas plants or zero-emission plants?
• An **upper bound** on pollution reduction benefits
• We quantify:
 – Changes in GHG & criteria pollutant emissions
 • CO₂, CH₄, SO₂, NOₓ, PM₂.₅, PM₁₀
 – Effect on public health and warming
 • CH₄ global temperature potential (GTP₂₀⁰₆₈) = 68 ± 75%
 • Sensitivity to fugitive CH₄ emission rates of 0% - 7%
 – Costs
Baseline scenario

- Coal generation is flat
- Gas generation doubles
- CO_2 rises
- CH_4 rises, but uncertain
- Criteria pollutants flat after 2016

Solid line: EIA Reference Case
Shaded area: EIA high gas/low gas resource cases

MATS standard goes into effect

EIA Annual Energy Outlook, 2014
Methods

- **Baseline emissions:** Identify emissions from coal plants, 2016 – 2040
- **Emission reductions:** Calculate emissions if same coal generation came from gas or zero-emission plants
- **Sensitivity to fugitive CH\(_4\):** Vary rate of fugitive CH\(_4\) emissions from 0% - 7%
- **Warming effects:** Use climate models to estimate warming effects
- **Effect on health:** Monetize reductions in health damages (APEEP)
Emission rates

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>CO₂</th>
<th>NOₓ</th>
<th>SO₂</th>
<th>CH₄</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal - 2016</td>
<td>910</td>
<td>0.69</td>
<td>0.72</td>
<td>0.01</td>
<td>0.14</td>
</tr>
<tr>
<td>A): High-efficiency gas</td>
<td>300</td>
<td>0.09</td>
<td>0.02</td>
<td>0.008</td>
<td>0.06</td>
</tr>
<tr>
<td>B): Average gas</td>
<td>450</td>
<td>0.17</td>
<td>0.02</td>
<td>0.009</td>
<td>0.06</td>
</tr>
<tr>
<td>C): Zero emission plants</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Change in U.S. power sector emissions

- Constant across years 2016 – 2040
- 3% fugitive CH$_4$ rate
Change in warming from U.S. power sector

Solid line: EIA Reference Case, GTP20_{CH_4} = 68, 3% fugitive CH_4
Shaded area: EIA high gas/low gas cases, GTP20_{CH_4} = 68 ± 75%, 0-7% fugitive CH_4
Percent change in warming, 2040

<table>
<thead>
<tr>
<th>Scenario</th>
<th>0%</th>
<th>3%</th>
<th>5%</th>
<th>7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch to high-efficiency gas</td>
<td>-47%</td>
<td>-17%</td>
<td>-5%</td>
<td>+5%</td>
</tr>
<tr>
<td></td>
<td>(-38%, -3%)</td>
<td>(-33%, +11%)</td>
<td></td>
<td>(-28%, +21%)</td>
</tr>
<tr>
<td>Switch to average gas gas</td>
<td>-35%</td>
<td>+1%</td>
<td>+16%</td>
<td>+28%</td>
</tr>
<tr>
<td></td>
<td>(-24%, +18%)</td>
<td>(-18%, +36%)</td>
<td></td>
<td>(-12%, +49%)</td>
</tr>
<tr>
<td>Switch to zero-emission plants</td>
<td>-70%</td>
<td>-53%</td>
<td>-45%</td>
<td>-40%</td>
</tr>
<tr>
<td></td>
<td>(-64%, -44%)</td>
<td>(-61%, -36%)</td>
<td></td>
<td>(-59%, -30%)</td>
</tr>
</tbody>
</table>

Assumptions: EIA Reference Case, GTP20\(_{CH4}\) = 68

In parenthesis: EIA high gas/low gas cases, GTP20\(_{CH4}\) = 68 ± 75%
Monetized criteria pollutant health benefits: ~$20-$25B annually

- $6M value of statistical life
- Calculated with APEEP model*
- >75% due to reductions in SO$_2$
- Annual capital cost: $35 - $65 billion**

** Assuming capital cost of $1,000 - $1,300/kW, facility life of 20 years, and blended cost of capital of 7% - 12%
Health benefits from criteria pollution

- $10 billion
- $7 billion

2016 damages from coal plants, EIA Reference Case
2016 damages from average gas replacement plants
Coal retrofits may be a more cost effective way to reduce SO$_2$

<table>
<thead>
<tr>
<th>SO$_2$ control technology</th>
<th>Capital cost ($/kW)</th>
<th>Fixed O&M ($/MW-yr)</th>
<th>Variable O&M ($/MWh)</th>
<th>Fuel cost ($/MWh)</th>
<th>SO$_2$ reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Build new NGCC</td>
<td>$1,000 - $1,300</td>
<td>$5,500 - $6,200</td>
<td>$2 - $3.5</td>
<td>$24 - $25</td>
<td>99%</td>
</tr>
<tr>
<td>Flue gas desulfurization (FGD)</td>
<td>$500</td>
<td>$8,100</td>
<td>$1.8</td>
<td>$15 - $20</td>
<td>98%</td>
</tr>
<tr>
<td>Direct sorbent injection (DSI)</td>
<td>$40</td>
<td>$590</td>
<td>$7.9</td>
<td>$15 - $20</td>
<td>50%</td>
</tr>
</tbody>
</table>

- Retrofit costs for a 500 MW plant; costs higher for small plants
- PJM: Plants <400 MW & >40 years old at high risk of retirement
 - 25% of PJM’s 80 GW of coal

Lazard, Levelized Cost of Energy Analysis – Version 6.0
PJM. Coal Capacity at Risk of Retirement in PJM
Summary

• Switching to gas is a viable path to 30% CO$_2$ reductions

• However, the net effect on warming is unclear due to fugitive methane emissions.

• Health benefits are large, and currently not adequately monetized
Thank you!

- Roger Lueken rlueken@andrew.cmu.edu
- Kelly Klima kklima@andrew.cmu.edu
- Mike Griffin wmichaelgriffin@cmu.edu
- Jay Apt apt@cmu.edu

Thanks to the Doris Duke Charitable Foundation, the R.K. Mellon Foundation, the Heinz Endowments. This research was also supported in part by the Climate and Energy Decision Making (CEDM) center, created through a cooperative agreement between the National Science Foundation (SES-0949710) and Carnegie Mellon University.
100-year warming potential

A: High-efficiency gas

B: Average gas

C: Zero-emission plants

Quantified with MAGICC6 climate model*

Methane’s warming potential

- **Global Temperature Potential (GTP):** “*change in global mean surface temperature at a chosen point in time in response to an emission pulse relative to that of CO₂*”*

- $GTP_{CO₂} = 1$
- $GTP_{20CH₄} = 68 \pm 75\%$
- $GTP_{100CH₄} = 15\pm 75\%$

$$\Delta T_i = \sum_{i=1}^{I} \sum_{n=1}^{N} GTP_i(n) \times AGTP_{CO₂} (n) \times M_i(n)$$

Change in warming from U.S. power sector

Sensitivity to EIA reference case

3% fugitive CH4 rate, GTP20_{CH4} = 68 ± 75%
U.S. coal plants

As of 2009:
- 560 plants
- 380 GW (1/3 of U.S. total)
- 45% of U.S. generation
- Avg age: 41 years

eGRID 2009
Some think of gas as a ‘bridge fuel’

• “The Obama Administration has promoted […] actions to promote fuel switching from oil and coal to natural gas or renewables” – President’s Climate Action Plan, June 2013

• “What I would argue is that the way to look at it […] as kind of a bridge to a very low carbon future – is that it affords us a little bit more time to develop the technologies, to lower the costs of the alternative technologies, to get the market penetration of these new technologies.” -Secretary Moniz, May 2013