Rational habits in residential electricity demand?

Massimo Filippini, Bettina Hirl, Giuliano Masiero
Università della Svizzera Italiana (USI)
The dynamic energy landscape, 33rd USAEE/IAEE North American Conference

Pittsburgh, October 25-28, 2015
The electricity consumption decision
Are households forward looking?

- Do households consider the future when deciding how much electricity to consume?
- If YES, what are the policy implications?

Example CO$_2$ tax:

- What is the impact of a CO$_2$ tax on energy consumption?
- Direct impact of the tax on today’s consumption
- Impact on today’s consumption through reaction to future tax
- If a household expects a tax in the future, takes this into account when making today’s consumption decision
Are households forward looking?

- Do households consider the future when deciding how much electricity to consume?
- If YES, what are the policy implications?

Example CO_2 tax:

- What is the impact of a CO_2 tax on energy consumption?
- Direct impact of the tax on today’s consumption
- Impact on today’s consumption through reaction to future tax
- If a household expects a tax in the future, takes this into account when making today’s consumption decision
What influences electricity demand?

Electricity prices, weather, household income etc.

- These are all in the present. Past? Future?

Past consumption matters

- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter

- Rational agents have expectations of the future
- Incorporate these in their behaviour
What influences electricity demand?

Electricity prices, weather, household income etc.
- These are all in the present. Past? Future?

Past consumption matters
- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter
- Rational agents have expectations of the future
- Incorporate these in their behaviour
What influences electricity demand?

Electricity prices, weather, household income etc.

- These are all in the present. Past? Future?

Past consumption matters

- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter

- Rational agents have expectations of the future
- Incorporate these in their behaviour
Overview

What is this paper about?
- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?
- Combine rational habits and the partial dynamic adjustment model
- Allow for forward looking agents

How is that relevant?
- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities
Overview

What is this paper about?
- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?
- Combine rational habits and the partial dynamic adjustment model
- Allow for forward looking agents

How is that relevant?
- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities
Overview

What is this paper about?
- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?
- Combine rational habits and the partial dynamic adjustment model
- Allow for forward looking agents

How is that relevant?
- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities
A quick overview of the literature (aggregate data, no info on capital stock)

Static model of electricity demand
Azevedo et al. (2011); Cebula et al. (2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:
Alberini and Filippini (2011); Paul et al. (2009); Bernstein and Griffin (2005)

Rational habits:
Becker et al. (1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:
Scott (2012)
A quick overview of the literature (aggregate data, no info on capital stock)

Static model of electricity demand
Azevedo et al. (2011); Cebula et al. (2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:
Alberini and Filippini (2011); Paul et al. (2009); Bernstein and Griffin (2005)

Rational habits:
Becker et al. (1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:
Scott (2012)
A quick overview of the literature (aggregate data, no info on capital stock)

Static model of electricity demand
Azevedo et al. (2011); Cebula et al. (2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:
Alberini and Filippini (2011); Paul et al. (2009); Bernstein and Griffin (2005)

Rational habits:
Becker et al. (1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:
Scott (2012)
A quick overview of the literature (aggregate data, no info on capital stock)

Static model of electricity demand
Azevedo et al. (2011); Cebula et al. (2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:
Alberini and Filippini (2011); Paul et al. (2009); Bernstein and Griffin (2005)

Rational habits:
Becker et al. (1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:
Scott (2012)
The rational habits model for electricity demand

Households maximize utility from energy services:

- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
The rational habits model for electricity demand

Households maximize utility from energy services:
- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
The rational habits model for electricity demand

Households maximize utility from energy services:
- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
Today’s consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

$$\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

s.t.

- $e_0 = E_0$
- $\sum_{t=1}^{\infty} \delta^{t-1}(c_t + P_t e_t) = W^0$

Solution of the FOC leads to the first-difference equation:

$$e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1}$$
Today’s consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

$$\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

s.t.

- $$e_0 = E_0$$
- $$\sum_{t=1}^{\infty} \delta^{t-1} (c_t + P_t e_t) = W^0$$

Solution of the FOC leads to the first-difference equation:

$$e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1}$$
Empirical model

We modify the first-difference equation to obtain:

\[e_{it} = \beta_0 + \beta_1 e_{it-1} + \beta_2 e_{t+1} + \beta_3 P_{it} + \beta_4 PG_{it} + \beta_5 Y_{it} \]

\[+ \beta_6 HDD_{it} + \beta_7 CDD_{it} + \beta_8 HS_{it} + \nu_{it} \]

\(e_{it} \): consumption today
\(P_{it} \): price of electricity
\(PG_{it} \): price of gas
\(Y_{it} \): income
\(HDD_{it}, CDD_{it} \): heating and cooling degree days
\(HS_{it} \): numbers of detached houses
Empirical model

We modify the first-difference equation to obtain:

\[e_{it} = \beta_0 + \beta_1 e_{it-1} + \beta_2 e_{t+1} + \beta_3 P_{it} + \beta_4 PG_{it} + \beta_5 Y_{it} \]

\[+ \beta_6 HDD_{it} + \beta_7 CDD_{it} + \beta_8 HS_{it} + v_{it} \]

\(e_{it} \): consumption today
\(P_{it} \): price of electricity
\(PG_{it} \): price of gas
\(Y_{it} \): income
\(HDD_{it}, CDD_{it} \): heating and cooling degree days
\(HS_{it} \): numbers of detached houses
Econometric issues

Three potential econometric issues to deal with:
- Heterogeneity bias due to low number of regressors
- Endogeneity of past and future consumption
- Measurement error in the price of electricity

Properties of the dataset:
- Relatively long time dimension (T=17)
- Small number of units (N=48)
- Properties of panel data estimators like GMM hold especially for N large
Econometric issues

Three potential econometric issues to deal with:
- Heterogeneity bias due to low number of regressors
- Endogeneity of past and future consumption
- Measurement error in the price of electricity

Properties of the dataset:
- Relatively long time dimension (T=17)
- Small number of units (N=48)
- Properties of panel data estimators like GMM hold especially for N large
Following Becker et al. (1994) and Baltagi et al. (2002), we use the following instruments for the lag and lead of consumption as well as the price of electricity:

- Input prices of coal and gas for the electricity sector
- Two-period lags and leads of the price of electricity
- One-period lag and lead of heating degree days
Estimation results 2SLSFE specification

<table>
<thead>
<tr>
<th>Instrumented:</th>
<th>e_{t-1}, e_{t+1}</th>
<th>e_{t-1}, e_{t+1}, P_t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>e_{t-1}</td>
<td>0.432*** (4.90)</td>
<td>0.422*** (4.70)</td>
</tr>
<tr>
<td>e_{t+1}</td>
<td>0.221** (2.85)</td>
<td>0.206** (2.80)</td>
</tr>
<tr>
<td>P_t</td>
<td>-6787.8*** (-4.19)</td>
<td>-8196.7** (-2.60)</td>
</tr>
<tr>
<td>PG_t</td>
<td>-1243.3 (-0.12)</td>
<td>-121.5 (-0.01)</td>
</tr>
<tr>
<td>Y_t</td>
<td>0.0309** (2.87)</td>
<td>0.0325** (3.02)</td>
</tr>
<tr>
<td>HS_t</td>
<td>-562.0** (-3.11)</td>
<td>-588.6** (-3.29)</td>
</tr>
<tr>
<td>HDD_t</td>
<td>0.185*** (10.16)</td>
<td>0.182*** (9.21)</td>
</tr>
<tr>
<td>CDD_t</td>
<td>0.641*** (16.84)</td>
<td>0.635*** (16.76)</td>
</tr>
<tr>
<td>N</td>
<td>611</td>
<td>611</td>
</tr>
</tbody>
</table>

Underidentification test	41.495 [0.0000]	42.007 [0.0000]
Weak identification test	7.096	6.164
5% critical value	3.78	NA
Hansen J statistic	9.848 [0.1312]	10.210 [0.1161]
Short and long run elasticities

All elasticities are negative and shown in absolute values.

<table>
<thead>
<tr>
<th>Model</th>
<th>Short run</th>
<th>Long run</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE</td>
<td>0.1073</td>
<td>0.2603</td>
</tr>
<tr>
<td>FE2SLS</td>
<td>0.0931</td>
<td>0.2847</td>
</tr>
<tr>
<td></td>
<td>0.0942</td>
<td>0.2207</td>
</tr>
</tbody>
</table>

Short run: residential electricity demand inelastic
Immediate adjustment appliances stock and behavioural habits is costly

Long run: residential electricity demand more elastic
Agents have more time to adapt habits and replace equipment
Short and long run elasticities

All elasticities are negative and shown in absolute values.

<table>
<thead>
<tr>
<th>Model</th>
<th>Short run</th>
<th>Long run</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE (1)</td>
<td>0.1073</td>
<td>0.2603</td>
</tr>
<tr>
<td>FE2SLS (2)</td>
<td>0.0931</td>
<td>0.2847</td>
</tr>
<tr>
<td>(3)</td>
<td>0.0942</td>
<td>0.2207</td>
</tr>
</tbody>
</table>

Short run: residential electricity demand inelastic
Immediate adjustment appliances stock and behavioural habits is costly

Long run: residential electricity demand more elastic
Agents have more time to adapt habits and replace equipment
Conclusions

Understanding demand:
- Knowing the factors influencing demand is crucial for policy makers
- Especially true for policies targeting energy savings
- DPA models may lead to biased estimates of policy impact

Future consumption impacts current consumption:
- We found evidence for forward looking behavior
- Effects of long-term policies today may depend on anticipated effect on future consumption
- Effect reinforced by anticipating the effect on future consumption
Conclusions

Understanding demand:

- Knowing the factors influencing demand is crucial for policy makers
- Especially true for policies targeting energy savings
- DPA models may lead to biased estimates of policy impact

Future consumption impacts current consumption:

- We found evidence for forward looking behavior
- Effects of long-term policies today may depend on anticipated effect on future consumption
- Effect reinforced by anticipating the effect on future consumption
Thank you
Estimation results FE specification

<table>
<thead>
<tr>
<th></th>
<th>FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_{t-1}</td>
<td>0.476*** (14.97)</td>
</tr>
<tr>
<td>e_{t+1}</td>
<td>0.309*** (10.84)</td>
</tr>
<tr>
<td>P_t</td>
<td>-5602.4*** (-3.80)</td>
</tr>
<tr>
<td>PG_t</td>
<td>-10921.8 (-1.08)</td>
</tr>
<tr>
<td>Y_t</td>
<td>0.0114 (1.36)</td>
</tr>
<tr>
<td>HS_t</td>
<td>-306.9* (-2.28)</td>
</tr>
<tr>
<td>HDD_t</td>
<td>0.181*** (9.72)</td>
</tr>
<tr>
<td>CDD_t</td>
<td>0.724*** (14.18)</td>
</tr>
<tr>
<td>Constant</td>
<td>182.5 (0.51)</td>
</tr>
</tbody>
</table>

N 719
The rational habits model for electricity demand

Households maximize utility from energy services:

- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
The rational habits model for electricity demand

Households maximize utility from energy services:
- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
The rational habits model for electricity demand

Households maximize utility from energy services:
- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.
Appliances and habits

Appliance stock equation:

\[A_t = (1 - \rho)A_{t-1} + e_{t-1} \]

where \(\rho \) is the depreciation rate of the appliance stock.

- Appliance stock can be approximated by accumulated past consumption

Stock of habits

- Habituated to certain level of consumption and appliances
- Stock of appliances ↔ Stock of behavioural habits
Appliances and habits

Appliance stock equation:

\[A_t = (1 - \rho)A_{t-1} + e_{t-1} \]

where \(\rho \) is the depreciation rate of the appliance stock.

- Appliance stock can be approximated by accumulated past consumption

Stock of habits

- Habituated to certain level of consumption and appliances
- Stock of appliances \(\leftrightarrow \) Stock of behavioural habits
Today’s consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

\[
\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)
\]

s.t.

- \(e_0 = E_0\)
- \(\sum_{t=1}^{\infty} \delta^{t-1}(c_t + P_t e_t) = W^0\)

Solution of the FOC leads to the first-difference equation:

\[
e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1}
\]
Today’s consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

\[\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t) \]

s.t.

- \(e_0 = E_0 \)
- \(\sum_{t=1}^{\infty} \delta^{t-1}(c_t + P_t e_t) = W^0 \)

Solution of the FOC leads to the first-difference equation:

\[e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1} \]