Optimal Retail Choice in Modern Power Sectors

Felipe Castro & Duncan Callaway

Energy & Resources Group
University of California at Berkeley

September, 2015
A challenging economic sector
Rates, rates, rates!

My Rate Plan Choices

PG&E offers several **Base Plan** choices.

Tiered Base Plan
PG&E’s standard **Tiered rate plan** is based on usage tiers. As you use more electricity during your monthly bill period, the price goes up with each tier.

Electric Vehicle Base Plan
The **Plug-in Electric Vehicles rate plan** is also Time of Use, just without usage tiers. This plan is environmentally friendly and energy efficient, just like your vehicle.

Time of Use Base Plan
An alternative to the Tiered Plan, the **Time of Use plan** pricing varies depending on when you use during the day, week, and season. This puts you in control.

On top of your Base Plan, PG&E also offers **Add-ons** to help you save.

SmartRate™ Add-on
The **SmartRate Plan** helps you save up to 20% on your summer electric bill. Receive a discount for reducing your electricity usage up to 15 days a year.

Net Energy Metering Add-on
The **Net Energy Metering Add-on** allows customers with an eligible power generator like solar panels to earn a credit for power exported to the grid.
It won’t be easy…”
Where to start? The peak-load pricing theory

(Steiner, 1957) (Boitzeux, 1960) (Turvey, 1968)
(Panzar, 1976) (Crew & Kleindorfer, 1976)
Where to start? The Peak-Load Pricing theory

\[ICAP = q_{\text{day}} \]

(Steiner, 1957) (Boitzeux, 1960) (Turvey, 1968)

\[p_{\text{day}} = c_{\text{ICAP}} + c_e \]

(Panzar, 1976) (Crew & Kleindorfer, 1976)

\[p_{\text{night}} = c_e \]

Where to start? The peak-load pricing theory

\[ICAP = q_{\text{day}} \]

\[p_{\text{day}} = c_{ICAP} + c_e \]

\[p_{\text{night}} = c_e \]

\[q_{\text{night}} \]

\[q_{\text{day}} \]
Advanced versions

State of nature: Day, week, year, etc.
The retail model

Regulator

LSE

Supervises LSE

Wholesale market

Tariffs

Consumption
The retail model

Regulator

Supervises LSE

Wholesale market

Maximize customer surplus

Subject to

Revenue sufficiency of LSE

LSE offers a portfolio of tariffs

Regulator internalizes impacts on long-run customers’ decisions
Long-run decisions

Retail customers

Array of technologies

Smart meter

Smart meter + PV panel

Storage system

Back-up generation

Tariffs

Residential

Industrial

Flat rate

Time-of-Use
Long-run decisions

- Retail customers
 - Array of technologies
 - Smart meter
 - Segment
 - Flat rate
 - Tariffs
 - Time-of-Use
 - Industrial
 - Back-up generation
The tariffs

Two-part tariffs

Fixed charge (e.g. $/meter) \quad \quad l_\tau \in \mathbb{R}

Variable charge (e.g. c$/kWh) \quad \quad p_\tau \in \mathbb{R}_+^{\left|\Omega\right| \times T}

Variable charge feasible region \quad \quad \mathcal{P}_\tau \subset \mathbb{R}_+^{\left|\Omega\right| \times T}
Flat rate

\[p(t, \omega) \]
Flat rate

Constraints \(p(t_1, \omega_1) = p(t_1, \omega_1) = \cdots = p(T(|\Omega|)) \)
Time-of-Use

$p(t, \omega)$

Winter day

Summer day

t
\[p(t, \omega) = p(\text{off-peak}_1)(\text{Summer}) = p(\text{off-peak}_2)(\text{Summer}) = \cdots \]

\[p(\text{peak}_1)(\text{Summer}) = p(\text{peak}_2)(\text{Summer}) = \cdots \]

\[\vdots \]
Real time pricing

$p(t, \omega)$

Day 1
Day 2
Day 3
Real time pricing

\[p(t, \omega) \]

No constraints
Long-run equilibrium

\[
\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}
\]

\[
\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i
\]

\((y, x) \in Q\)

\(p^h \in \mathcal{P}^h\)

\(\alpha \in \mathcal{A}\)
Normative implications

No additional structure

- Proposition 1 (No switching)

Additional structure

- Proposition 1 (Sufficiency + easy)

- Corollary 1 (Eq. welfare maximizing)

- Corollary 2 (Opt. tariff → Opt. outcomes)
The structure of the analysis

- **AMI cost**
 - [(2014)$/month]

- **RPS targets**
 - 1.00
 - 1.50
 - 2.00

- **Flat rate + TOU v/s Flat rate + TOU + RTP**

- **Load and weather patterns**
 - California
 - Denmark

- **Automation technology upfront cost**
 - [(2014)$]
The structure of the analysis

- AMI cost $[(2014)\$/month]$
- RPS targets
- Load and weather patterns
- Flat rate + TOU v/s Flat rate + TOU + RTP
- California
- Denmark
- Automation technology upfront cost $[(2014)\$]$
The structure of the analysis

RPS targets

Load and weather patterns

California

Denmark

Flat rate + TOU

v/s

Flat rate + TOU + RTP

AMI cost

[(2014)$/month]

Automation technology upfront cost

[(2014)$]

15%

35%

55%

75%

1.00

1.50

2.00

113

170

226
The structure of the analysis

- **AMI cost**
 - [(2014)$/month]

- **RPS targets**
 - 1.00
 - 1.50
 - 2.00

- **Load and weather patterns**
 - California
 - Denmark

- **Flat rate + TOU v/s Flat rate + TOU + RTP**

- **Automation technology upfront cost**
 - [(2014)$]
The structure of the analysis

RPS targets

Load and weather patterns

California

Denmark

Flat rate + TOU
v/s
Flat rate + TOU + RTP

AMI cost
[(2014)$/month]

Automation technology
upfront cost
[(2014)$]
Recall

- **AMI cost**: [(2014)$/month]
 - 35%
 - 15%

- **RPS targets**: 1.00, 1.50, 2.00

- **Automation technology upfront cost**: [(2014)$]
 - 113, 170, 226

- **Load and weather patterns**
 - California
 - Denmark

- **Flat rate + TOU v/s Flat rate + TOU + RTP**
2 Tariffs

- Standard meter
- AMI
- AMI + Automation
- Flat rate
- TOU

Representative costumer
Demand assumptions

3 Tariffs

Representative costumer

- Standard meter
- AMI
- AMI + Automation

- Flat rate
- TOU
- RTP
Welfare difference (3Tar - 2Tar)

Incremental cost AMI [$/month]

Avg. Absolute difference [$/year]

Avg. Relative difference [%]

Capital cost automation [$]

113 170 226

1.0

1.5

2.0

0M

50M

100M

150M

200M
Welfare difference (3Tar - 2Tar)
Demand mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Customer type</th>
<th>Tariff</th>
<th>Incremental cost AMI [$/month]</th>
<th>Capital cost automation [$]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>226</td>
<td>226</td>
</tr>
<tr>
<td>2 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td>🗢️ 🗢️ 🗢️</td>
<td>🗢️ 🗢️ 🗢️</td>
</tr>
<tr>
<td>AMI only</td>
<td>TOU</td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
<tr>
<td>AMI +</td>
<td>TOU</td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
<tr>
<td>automation</td>
<td></td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td>🗢️ 🗢️ 🗢️</td>
<td>🗢️ 🗢️ 🗢️</td>
</tr>
<tr>
<td>AMI only</td>
<td>RTP</td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
<tr>
<td>AMI +</td>
<td>RTP</td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
<tr>
<td>automation</td>
<td></td>
<td></td>
<td>🗬️ 🗬️ 🗬️</td>
<td>🗬️ 🗬️ 🗬️</td>
</tr>
</tbody>
</table>
Supply mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Generator</th>
<th>Avg. Installed capacity [MW-year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
</tbody>
</table>

15% RPS
Supply mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Generator</th>
<th>Avg. Installed capacity [MW-year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
</tbody>
</table>

30% RPS
Supply mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Generator</th>
<th>Avg. Installed capacity [MW-year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-merit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td>45K</td>
</tr>
<tr>
<td>3 Tariffs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-merit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td></td>
<td>45K</td>
</tr>
</tbody>
</table>

50% RPS
Supply mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Generator</th>
<th>Avg. Installed capacity [MW-year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Mid-merit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td></td>
</tr>
</tbody>
</table>

75% RPS
Final thoughts and future work

• The problem of rate design is far from simple yet very important in the current stage of the electricity sector.

• Normative guidelines could involve more complex analysis specially with the current computational power and algorithmic techniques.

• Analysis of rate design should contemplate not only effects on supply of a given rate offering but also on the long-run demand decisions.

• Next: An application to an analysis of residential rates in California.
Thank you!
Optimal Retail Choice in Modern Power Sectors

Felipe Castro & Duncan Callaway

Energy & Resources Group
University of California at Berkeley

September, 2015
Welfare analysis by tech. costs: Denmark

\[\Delta W = \Delta GS - \Delta C = C_{\text{reduction}} + GS_{\text{increase}} \]
Welfare analysis by RPS: Denmark

Welfare comparison by RPS

Welfare composition by RPS

Elasticity
- high
- medium
- low

Graphs showing welfare analysis with RPS for Denmark.
Technology mix: Denmark

Demand mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Customer type</th>
<th>Tariff</th>
<th>Incremental cost AMI [$/month]</th>
<th>Capital cost automation [$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td>113 170 226</td>
<td>113 170 226</td>
</tr>
<tr>
<td></td>
<td>AMI only</td>
<td>TOU</td>
<td>●●●</td>
<td>●●●</td>
</tr>
<tr>
<td></td>
<td>AMI + automation</td>
<td>TOU</td>
<td>●●●</td>
<td>●●●</td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td>113 170 226</td>
<td>113 170 226</td>
</tr>
<tr>
<td></td>
<td>AMI only</td>
<td>RTP</td>
<td>●●●</td>
<td>●●●</td>
</tr>
<tr>
<td></td>
<td>AMI + automation</td>
<td>RTP</td>
<td>●●●</td>
<td>●●●</td>
</tr>
</tbody>
</table>

Supply mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Generator</th>
<th>Incremental cost AMI [$/month]</th>
<th>Capital cost automation [$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Mid-merit</td>
<td>2,417 2,417 2,417</td>
<td>2,417 2,417 2,417</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>2,154 2,155 2,155</td>
<td>2,156 2,157 2,157</td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td>1,747 1,778 1,779</td>
<td>1,841 1,872 1,873</td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td>4,978 4,978 4,978</td>
<td>4,978 4,978 4,978</td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Mid-merit</td>
<td>2,417 2,417 2,417</td>
<td>2,417 2,417 2,417</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>2,158 2,158 2,158</td>
<td>2,158 2,159 2,159</td>
</tr>
<tr>
<td></td>
<td>High-peak</td>
<td>1,233 1,249 1,256</td>
<td>1,283 1,299 1,307</td>
</tr>
<tr>
<td></td>
<td>Wind</td>
<td>4,979 4,979 4,979</td>
<td>4,979 4,979 4,979</td>
</tr>
</tbody>
</table>

Avg. Installed capacity [MW-year]

- 1,233
- 4,979
The regulator problem

\[
\max_{(\alpha_h, l_h, p^\tau)} \mathbb{E} \left[\sum_{\tau} \sum_h \alpha_h [S_h(p^\tau) - p^\tau D_h(p^\tau) - k_h - l_h] \right]
\]

\[
\mathbb{E} \left[\sum_{\tau} \sum_h \alpha_h [(p^\tau - \lambda) D_h(p^\tau) + l_h] \right] - \Pi \geq 0
\]

\[p^\tau \in \mathcal{P}^\tau\]

\[\alpha \in \mathcal{A}\]

Proposition 1 At the optimal retail allocation, no customer enrolled in a program has negative net surplus and no customer has incentives to change to a different retail tariff.
Long-run equilibrium

\[
\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}
\]

\[
\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i
\]

\((y, x) \in Q\)

\(p^h \in \mathcal{P}^h\)

\(\alpha \in \mathcal{A}\)
Long-run equilibrium

$$\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}$$

$$\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i$$

$$(y, x) \in Q$$

$$p^h \in P^h$$

$$\alpha \in A$$
Long-run equilibrium

\[
\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}
\]

\[
\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i
\]

\((y, x) \in Q\)

\(p^h \in \mathcal{P}^h\)

\(\alpha \in \mathcal{A}\)
Long-run equilibrium

\[\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\} \]

\[\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i \]

\((y, x) \in Q\)

\(p^h \in \mathcal{P}^h\)

\(\alpha \in \mathcal{A}\)
Long-run equilibrium

$$\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}$$

$$\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i$$

$$(y, x) \in Q$$

$$p^h \in P^h$$

$$\alpha \in A$$
Long-run equilibrium

\[
\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}
\]

\[
\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i
\]

\((y, x) \in Q\)

\(p^h \in P^h\)

\(\alpha \in A\)
Long-run equilibrium

\[
\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\}
\]

\[
\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i
\]

\((y, x) \in Q\)

\(p^h \in P^h\)

\(\alpha \in A\)
Long-run equilibrium

\[\max E \left\{ \sum_h \alpha_h [S_h(p_h) - k_h] - c(y, x) \right\} \]

\[\sum_{h \in H} \alpha_h D_h(p_h) = \sum_{i \in I} y_i \]

\[(y, x) \in Q \]

\[p^h \in P^h \]

\[\alpha \in \mathcal{A} \]
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^T y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^\top y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Supply assumptions

$$\max_{y,x} E[(\lambda - c)^T y] - x \cdot k$$

subject to

$$0 \leq y \leq x \cdot \rho$$
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^T y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^\top y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^\top y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Supply assumptions

\[
\max_{y,x} E[(\lambda - c)^T y] - x \cdot k
\]

subject to

\[
0 \leq y \leq x \cdot \rho
\]
Demand mix

<table>
<thead>
<tr>
<th># Tariffs</th>
<th>Customer type</th>
<th>Tariff</th>
<th>15</th>
<th>35</th>
<th>55</th>
<th>75</th>
<th>RPS [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMI only</td>
<td>TOU</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMI + automation</td>
<td>TOU</td>
<td></td>
</tr>
<tr>
<td>3 Tariffs</td>
<td>Standard meter</td>
<td>Flat rate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMI only</td>
<td>RTP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMI + automation</td>
<td>RTP</td>
<td></td>
</tr>
</tbody>
</table>