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Overview and Research Summary

Effect of Average Temperature Changes on Electricity Demand

•  Using a weather-based long-term electricity demand forecasting model, this paper primarily forecasts the 
electricity demand and analyzes the effects of weather on electricity demand in Saudi Arabia, up to year 2040, by 
adopting a hybrid approach based on end-use and econometric methods. 

•  In addition, the paper quantifies, technically and economically, the relationship between climate conditions and 
electricity consumption, that can raise awareness of climate change on future heating and cooling equipment 
investments. 

•  Also, we apply the demand forecast as a first basic step to analyzing how much new generation capacity may be 
needed, which generation resources are applicable, how transmission and distribution systems should be 
expanded, and in which customer groups or geographic regions these requirements will be concentrated.

•  Using the results of this forecast, the paper identifies which DSM and efficiency programs are worth pursuing and 
when, as well as in which sectors and end-uses they should be implemented to realize optimal economic, 
environmental, and social benefits.

Conclusion
•  A major paradigm shift that includes energy efficiency and DSM investments is needed to change KSA’s high 

dependency on crude oil and refined petroleum products for electricity generation.
•  With the power sector consuming the largest energy in the country, an optimal energy system design is necessary 

to realize efficiency gains. 
•  Also, a unique weather-based systemic long-term forecasting model for KSA, accounting for weather effects using a 

hybrid approach of end use method and econometric analysis (based on demographic variables) is urgently 
required.. 

•  Our findings demonstrate an urgent need for decarbonizing the electricity sector and mitigate climate change 
impacts. In addition, investing on energy efficiency would reduce the demand significantly by more than 25% and 
realize significant economic, social and environmental benefits. Furthermore, this would help KSA to continue in its 
unique role as a global energy supplier and avoid a high price volatility in the world markets.

Demand Forecasting Methodology

Monthly Demand Weather Models Fitted to the Available Data Using 
Average Temp., HDD & Humidity Variables in EOA Residential Sector

October 24, 2016

Existing Generation 
and Transmission Data

SOA

New Generation Data

PLEXOS with Linear 
Programing Algorithm

COA EOAWOA

Demand 
Forecasting 

Model (Hybrid 
End-Use 

Econometric 
Model)

Optimal System Modeling

	

Model Descriptions
Forecasting model consists of two econometric sub-models: annual demand growth sub-model based on economic and demographic 
variables, and monthly weather-demand sub-model based on weather variables. Following the same approach used by Hyndman & Fan 
(2009), the model can be written as follows:

To estimate the weather factor              we can use the following regression model: 
                                          

           are the regression coefficients.

Variables Selections Criteria

Actual Annual Electricity Sales and Calculated Annual Demand from the 
End-Use Model
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Integrated Electricity evaluation for weather cases in the Frozen Energy 
Efficiency Scenario (2017-2040)
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Annual Demand Growth Econometric (Long-run) 
Sub-Model

Dependent Variables Independent 
Variables 

•  Commercial Electricity Sales
•  Governmental Electricity 

Sales
•  Agricultural electricity Sales
•  Others Sales

•  Population
•  Total GDP or 

other GDP 
categories

Monthly Demand Weather Econometric (Short-run) Sub-Model
Dependent Variables Independent Variables 
•  Residential Normalized 

Electricity Sales 
•  Commercial 

Normalized Electricity 
Sales

•  Monthly Maximum 
Temperature

•  Monthly Minimum Temperature
•  Monthly Average Temperature
•  Monthly CDD
•  Monthly HDD
•  Monthly Average Humidity 

yt,p = fp(wt )+ cj
j=1

j

∑ zj,t + nt

Denotes monthly electricity 
sales on year t (measured in 
GWh) during month period 
(p=1, 2, 3,……12)

Models all weather effects 
within each network 
operating area using 
econometric analysis.

Is the annual demographic and economic variable at 
time t and its impact on monthly demand via the 
coefficient 𝑐𝑗 (these terms do not depend on the 
period 𝑝) using multivariable econometric analysis.

Denotes the demand which is left unexplained by 
the model (the model residuals) at time 𝑡.

fp(wt ) fp(wt ) = β0 + βpwp,t
p=1

12

∑
Are explanatory 
weather variables 
which are nonlinear 
functions of historical 
weather parameters β0,βp
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Monthly Demand 
Forecasting

Peak to Average Forecasting

Model 1 CDD HDD CDD(-1) HDD (-1) Humidity 
Avg-CDD 

(Last 3 
Months)

Avg-CDD (Last 
6 Months)

Avg-CDD 
(Last 12 
Months)

R square Adjusted R 
Square RMSE Results

t-satstitics A A A A < 2 < 2 < 2 A 0.963 0.962 0.07326 Rejected 
Probability H A A A H H H A

Model 2 CDD
 

R square Adjusted R 
Square RMSE Results

t-satstitics A 0.898 0.898 0.15348 Accepeted
Probability A

Model 3 CDD HDD
 

R square Adjusted R 
Square RMSE Results

t-satstitics A A 0.92 0.92 0.1056 Accepeted
Probability A A

Model 4 CDD HDD CDD(-1) HDD (-1)
 

R square Adjusted R 
Square RMSE Results

t-satstitics A A < 2 A 0.921 0.92 0.1362 Rejected
Probability A A H A

Model 5 CDD HDD CDD(-1) HDD (-1)Humidity 
 

R square Adjusted R 
Square RMSE Results

t-satstitics A A A A A 0.931 0.93 0.12837 Accepeted
Probability H A A A A

Model 6 CDD HDD CDD(-1)
 

Avg-CDD 
(Last 3 

Months)

Avg-CDD (Last 
6 Months)

Avg-CDD 
(Last 12 
Months)

R square Adjusted R 
Square RMSE Results

t-satstitics < 2 A < 2 < 2 A < 2 0.955 0.954 0.10437 Rejected 
Probability H A A H H A
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