Technology-push, Demand-pull, and Strategic R&D Investment

Benjamin D. Leibowicz
Assistant Professor
Graduate Program in Operations Research and Industrial Engineering
Department of Mechanical Engineering
The University of Texas at Austin
Outline

Background

Model

Numerical Simulations
 Motivations for Stimulating Innovation
 Market Failure Sensitivity Analysis

Conclusions
Outline

Background

Model

Numerical Simulations
 Motivations for Stimulating Innovation
 Market Failure Sensitivity Analysis

Conclusions
Two Types of Technology Policy

▶ Technology-push
 - Reduce the private cost of engaging in innovation
 - Examples
 ▶ Public R&D
 ▶ Government funding for private R&D
 ▶ Support for higher education to enlarge pool of innovators

▶ Demand-pull
 - Create or expand markets to increase the payoff to successful innovation
 - Examples
 ▶ Subsidies for consumer purchases
 ▶ Direct government procurement
 ▶ Stronger intellectual property protection
Retrospective Analyses

- Empirical and case study literatures indicate that each policy type is generally ineffective if used alone.

- **Technology-push**
 - Mod program for wind turbines, U.S., 1970s
 - Loiter and Norberg-Bohm (1999)
 - GAVE program for biofuels, Netherlands, 1998–2002
 - Suurs and Hekkert (2009)

- **Demand-pull**
 - Tax credits for wind installations, California, 1980s
 - Nemet (2009)
 - Tax credits for solar installations, California, 1970s–present
 - Taylor (2008); Wiser et al. (2007)
Portfolio Approach

- Technology-push and demand-pull policies are complementary, and the ideal technology policy portfolio should include policies of both types (Gallagher et al., 2012).

- The relative importance of technology-push and demand-pull varies across applications (Pavitt 1984).

In this study, a bilevel optimization model is developed to determine the optimal balance of technology-push and demand-pull policies for a given technology policy application.
Outline

Background

Model

Numerical Simulations
 Motivations for Stimulating Innovation
 Market Failure Sensitivity Analysis

Conclusions
Key Model Features

Unique features
- Includes a policymaker and firms as separate decision-making agents
- Represents both technology-push and demand-pull
- Represents both process and product R&D
- Captures uncertainty in R&D outcomes

Three market failures
- Incomplete appropriability of innovation
- Imperfect competition
- Negative production externality

1 Contrast these to how energy technology R&D is incorporated into IAMs (Bosetti et al., 2009).
Strategic Innovation in an Oligopoly

<table>
<thead>
<tr>
<th>Study</th>
<th>Duopoly</th>
<th>Oligopoly</th>
<th>Process R&D</th>
<th>Product R&D</th>
<th>Spillovers</th>
<th>Uncertainty</th>
<th>Policy Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dasgupta and Stiglitz (1980)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Levin and Reiss (1988)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>D’Aspremont and Jacquemin (1988)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Suzumura (1992)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>Lin and Saggi (2002)</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>This Study</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
</tbody>
</table>
The Model

Policymaker Problem
- Technology Push
- Demand Pull

Firm Problem
- Product R&D Investment

Product R&D Success?
- Process R&D Investment
- Output of Existing Good

Output of New Good

Social Welfare

Profit
Outline

Background

Model

Numerical Simulations
- Motivations for Stimulating Innovation
- Market Failure Sensitivity Analysis

Conclusions
Outline

Background

Model

Numerical Simulations

Motivations for Stimulating Innovation

Market Failure Sensitivity Analysis

Conclusions
Three Different Motivations for Stimulating Innovation

Case 1: Combat negative externality
- The new good is a close and expensive substitute for the existing good, but the latter has a negative production externality (e.g. nuclear fission to fusion).

Case 2: Reduce cost
- The new good is a close substitute for the existing good, but can ultimately be produced at lower cost (e.g. crystalline silicon to organic PV).

Case 3: Create demand
- Developing the new good is expensive, but it has a large potential demand that is not being met by the existing good (e.g. new energy-consuming end-use appliance).
Case 1: Combat Negative Externality
Case 2: Reduce Cost

(a) Expected Welfare
(b) Expected Profit
(c) Product R&D Investment
(d) Process R&D Investment
Case 3: Create Demand

(a) Expected Welfare
(b) Expected Profit
(c) Product R&D Investment
(d) Process R&D Investment
Outline

Background

Model

Numerical Simulations

Motivations for Stimulating Innovation

Market Failure Sensitivity Analysis

Conclusions
Product R&D

![Graph (a)](Incomplete Appropriability)

- Spillover Strength (ν_S and ν_T)
- Product R&D Under Optimal Policy ($\$$)

![Graph (b)](Negative Production Externality)

- Negative Production Externality (ω)
- Product R&D Under Optimal Policy ($\$$)

![Graph (c)](Imperfect Competition)

- Number of Firms (n)
- Product R&D Under Optimal Policy ($\$$)
Expected Profit

(a) Incomplete Appropriability

(b) Negative Production Externality

(c) Imperfect Competition
Expected Welfare

(a) Incomplete Appropriability

- No Policy
- Optimal Policy

(b) Negative Production Externality

- No Policy
- Optimal Policy

(c) Imperfect Competition

- No Policy
- Optimal Policy
Optimal Technology-push Policy

- **Incomplete Appropriability**: The figure shows the relationship between optimal R&D subsidy and spillover strength (ν_S and ν_I) as a function of spillover strength. The subsidy decreases as the spillover strength increases.

- **Negative Production Externality**: This graph illustrates how the optimal R&D subsidy changes with the negative production externality (ω). The subsidy increases as the externality increases.

- **Imperfect Competition**: Here, the graph displays the relationship between optimal R&D subsidy and the number of firms (n). The subsidy decreases as the number of firms increases.
Outline

Background

Model

Numerical Simulations
- Motivations for Stimulating Innovation
- Market Failure Sensitivity Analysis

Conclusions
Conclusions

- Process and product R&D are substitutes.
- If innovation serves to combat a negative externality, technology policy should emphasize technology-push, but it is difficult to enhance welfare through technology policy.
- Firms perform less product R&D under stronger spillovers, but expected welfare is higher.
- Each firm performs less product R&D under greater competition, but total industry R&D rises.
- Expected welfare decreases with competition in the no-policy case, but increases with competition if optimal technology policies are imposed.
Acknowledgments

- Previous institutions where this work took place
 - International Institute for Applied Systems Analysis
 - Stanford University

- Individuals who offered guidance
 - Lawrence Boulder
 - Arnulf Grubler
 - Charles Kolstad
 - Volker Krey
 - James Sweeney
 - John Weyant

- Funding source
 - DOE Office of Science PIAMDDI grant
Thank You for Listening!
References

