Natural Gas Combined Cycle Innovations in the US: The Impact of the Advanced Turbine System Program

Dr. Kelly A. Stevens

Assistant Professor
School of Public Administration
Resilient, Intelligent and Sustainable Energy Systems Cluster
University of Central Florida
DOE’s Advanced Turbine System Program (ATS)

- DOE Advanced Turbine System program (DOE-ATS), 1992-2000
- Cost sharing program with NGCC turbine manufacturers: General Electric (GE) and Siemens Westinghouse Power Corporation (SWPC)
 - DOE $315 million, private sector $155 million
- Goals of the program for NGCC:
 - Improved efficiency
 - Reduced electrical generation costs
 - Lower NOx emissions
NGCC Efficiency

![Graph showing NGCC Efficiency over time]

- 50 percentile
- 25 percentile
- 75 percentile

Year Online

Research Question: What was the impact of DOE-ATS on innovation?

Measure: Patent counts (volume) and patent citations (impact)

Method: Fixed-effects negative binomial model for program participants and 12 other companies
Data

• PATSTAT, patent database
 • Patent application eventually granted into patents, by application filing date, families (unique invention)
 • Forward patent citations excluding self-citations for US patents only

• Relevant technology fields
 • Curtis (2003): cycles, compressor, combustor, closed loop steam cooling, seals, removable inner turbine shell, single crystal

• Companies (including mergers)
 • GE, SWPC, Alstom/ABB, Hitachi, Honeywell, IHI Corp., Kawasaki, Mitsubishi, MTU, Rolls-Royce, SNECMA, Toshiba, United Technologies
Method

\[\text{inventions}_{jt} = \beta_1 + \delta_{jt} (\text{year}_t \cdot \text{participant}_j) + \alpha_t + \alpha_j + \epsilon \]

\[\text{inventions}_{jt} = \beta_1 + \delta_{kt} (\text{year}_t \cdot \text{company}_k) + \alpha_t + \alpha_j + \epsilon \]

\[\text{citations}_{it} = \beta_1 + \delta_{jt} (\text{year}_t \cdot \text{participant}_j) + \alpha_t + \alpha_j + \epsilon \]

\[\text{citations}_{it} = \beta_1 + \delta_{kt} (\text{year}_t \cdot \text{company}_k) + \alpha_t + \alpha_j + \epsilon \]

\[j = \text{company} \]
\[t = \text{time (year)} \]
\[k = \text{participant company} \]
\[\text{participant} (0, \text{non-participant}; 1, \text{participant}) \]
\[\alpha_j = \text{company FE} \]
\[\alpha_t = \text{year FE} \]
\[i = \text{patent} \]
\[\epsilon = \text{error} \]
Count Results

Global Sample

US Sample

Upper CI 95%
Coefficient
Lower CI 95%
Citation Results: US

Citation Coefficients: Participants

GE: 7G, 7H, 9H 1995
7HA/9HA 2014
Westinghouse: 501G 1994
Siemens: V84.3A 1995
SWPC: H-series 2007

Citation Coefficients: Companies

Findings & Future Work

• Not a uniform impact on participants
 • GE robust increase in patenting
 • Westinghouse higher impact patents

• Implication: Program design should account for company characteristics

• Difference in global vs. US patenting

• Qualitative work for further evaluation

• Future work: NGCC ramp speed for intermittent renewable technology
Thank you!

Kelly.Stevens@ucf.edu