Learning Where to Drill
Drilling Decisions and Geological Quality in the Haynesville Shale

Mark Agerton
UC Davis
Agricultural & Resource Economics

24 September 2018
USAEE Conference
Learning has increased shale productivity

- Production process: *how* to drill
 - How does output respond to inputs, experience?
 - Improve well drilling, design
Learning has increased shale productivity

Production process: *how* to drill
- How does output respond to inputs, experience?
- Improve well drilling, design
- *Technology vanquishes Malthus*
Learning has increased shale productivity

- **Production process:** *how to drill*
 - How does output respond to inputs, experience?
 - Improve well drilling, design
 - *Technology vanquishes Malthus*

- **Geological quality:** *where to drill*
 - Which locations produce more?
 - Focus drilling on “sweet spots”
Learning has increased shale productivity

► Production process: *how* to drill
 - How does output respond to inputs, experience?
 - Improve well drilling, design
 - *Technology vanquishes Malthus*

► Geological quality: *where* to drill
 - Which locations produce more?
 - Focus drilling on “sweet spots”
 - *Learning hastens depletion*
How vs where matters for supply

<table>
<thead>
<tr>
<th></th>
<th>How</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing output/well in SR</td>
<td>technology</td>
<td>targeting</td>
</tr>
<tr>
<td>All locations produce more</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>LR depletion</td>
<td>delayed</td>
<td>accelerated</td>
</tr>
</tbody>
</table>

- Ignoring that firms choose where to drill \implies biased forecasts
 1. Underestimate depletion: drill best first
 2. Overstate technology: confound where & how
Research question: How bad could it be?

1) What do firms know about quality of locations they drill?
 – How does this affect their drilling decisions?
 – What do they learn by drilling?

2) Quantitative implications for supply
 – Short run: is learning sufficient to increase average output/well?
 – Long run: how severe are depletion effects?
Louisiana’s Haynesville shale (2003–2016)

Unit of observation: 1 sq. mile section

All parties in a section must participate in each well
Join data to form investment history
What firms know & learn affects 3 outcomes

- Leasing
- Drilling
- Production

Noisy signal ψ_0

Informativeness of signal:

Effects of information:

ψ_0, ψ_1

M. Agerton, UC Davis
What firms know & learn affects 3 outcomes

- Leasing (royalty)
- Noisy signal ψ_0
- Avg royalty rate r_i section i
What firms know & learn affects 3 outcomes

- Leasing (royalty)
- Drilling: Well 1 vs Wells 2–13
- Noisy signal ψ_0

Avg royalty rate r_i section i
Num wells drilled d_{it} section-month it
What firms know & learn affects 3 outcomes

- Leasing (royalty)
- Drilling: Well 1 vs Wells 2–13
- Production
 - Noisy signal ψ_0
 - Actual quality ψ_1

 Avg royalty rate r_i section i
 Num wells drilled d_{it} section-month it
What firms know & learn affects 3 outcomes

Leasing (royalty) → Drilling Well 1 vs Wells 2–13 → Production

- Noisy signal \(\psi_0 \)
- Actual quality \(\psi_1 \)

Avg royalty rate \(r_i \) section \(i \)
Num wells drilled \(d_{it} \) section-month \(it \)
Production

\[\log q_{iwt} \] section-well-month \(iwt \)

M. Agerton, UC Davis
Learning Where to Drill
What firms know & learn affects 3 outcomes

Leasing (royalty)

Drilling
Well 1 vs Wells 2–13

Production

Noisy signal ψ_0

Actual quality ψ_1

Informativeness of signal: ρ

1) Informativeness of signal: ρ
What firms know & learn affects 3 outcomes

1) Informativeness of signal: ρ

2) Effects of information: ψ_0, ψ_1
Econometric model: features & estimation

- **Goal**: recover firms’ information about quality
- **Challenge**: it’s not observable
Goal: recover firms’ information about quality

Challenge: it’s not observable

Drilling
 - Dynamic discrete choice: # wells to drill/month
 - Learning about quality
Econometric model: features & estimation

- **Goal**: recover firms’ information about quality
- **Challenge**: it’s not observable
- **Drilling**
 - Dynamic discrete choice: \# wells to drill/month
 - Learning about quality
- **Royalty rate & Production**
 - Help measure unobserved information
Econometric model: features & estimation

- **Goal**: recover firms’ information about quality
- **Challenge**: it’s not observable

- **Drilling**
 - Dynamic discrete choice: # wells to drill/month
 - Learning about quality

- **Royalty rate & Production**
 - Help measure unobserved information

- **Estimation**: Maximimum Simulated Likelihood
 - Rust (1987) nested fixed point approach for drilling
 - 3 outcomes linked by information (unobserved)
 - Integrate out signal & quality to recover distribution
Simulation: mean productivity of wells drilled

2 phases

1) Learning: 15% growth over 2008–16
2) Depletion: -0.4%/yr decline over 2016–24
Simulation: well productivity with, without learning

\[E[\gamma \psi_1 + \gamma g|d>0] \]

Simulation
- Fitted
- Max learning
- No learning

M. Agerton, UC Davis
Conclusion

▶ What’s new here

– Dynamic model of learning over space
– Aggregate implications of firms choosing where to drill
– Exploit regulatory structure in model, data
– Combine data on leasing, drilling, production

My questions

– Are companies learning about where to drill? Yes!
– They have noisy initial signals, and learn a lot from drilling
– Could this contribute to rising production/well? Yes!
– How bad are depletion effects? Moderate.
– Is Malthus slouching towards shale supply? No.
What’s new here

- Dynamic model of learning over space
- Aggregate implications of firms choosing *where* to drill
- Exploit regulatory structure in model, data
- Combine data on leasing, drilling, production

My questions

- Are companies learning about *where* to drill? Yes!
 - They have noisy initial signals,
 - and learn a lot from drilling
Conclusion

What’s new here

- Dynamic model of learning over space
- Aggregate implications of firms choosing *where* to drill
- Exploit regulatory structure in model, data
- Combine data on leasing, drilling, production

My questions

- Are companies learning about *where* to drill? Yes!
 - They have noisy initial signals,
 - and learn a lot from drilling
- Could this contribute to rising production/well? Yes!
- How bad are depletion effects? Moderate.
- Is Malthus slouching towards shale supply? No.