An Examination of Post-Recession Trends in Residential Electricity Consumption and Household Income

September 26, 2018

Gavin Pickenpaugh, Peter Balash
Systems Engineering & Analysis Directorate
POST-RECESSION
NATIONAL-LEVEL TRENDS
(2010-16)
Change in kWh consumption (2016 vs. 2010)

While Commercial and Industrial Sectors saw post-recession kWh growth, the Residential Sector experienced a 2.4% decline.

U.S. Residential Electricity Consumption

- Overall 2.4% decline 2010 to 2016
- YOY Declines in 3 of 6 years (2010 to 2016)

Sources: EIA
Other Post-recession national trends (2010-16 unless otherwise noted)

• **Electricity Price**
 • Real residential electricity price declined 1.3%

• **Weather**
 • Cooling degree days increased 7%
 • Heating degree days declined 13%

• **Stagnant Income Growth**
 • Median Real HH Income only increased 8.8% (1.4%/yr.), and did not surpass 1999 levels until 2016
 • Bottom Quintile mean real HH income only increased 6.9%
 • Top quintile mean real HH income increased 14.7%

• **Energy Efficiency**
 • International Energy Agency (IEA) indicates that as of 2016, U.S. households decreased energy expenditures by 10% relative to 2000 levels due to efficiency improvements

Source: https://www.iea.org/topics/energyefficiency/globaltrends/
STATE-LEVEL ANALYSIS
(2010-16)
Panel Data Regression Analysis
- 2010 to 2016 State-Level Annual Data (Lower 48 states)
- Fixed Effects vs. Random Effects

Questions to Address
- Which economic variable(s) were significantly associated with changes in residential electricity consumption?
 - Median Household Income
 - Personal Income per Capita
 - GDP per Capita
- What Other Variables were statistically significant?
 - Electricity Price
 - Degree Days
 - Energy Efficiency Score
 - Does including efficiency score, change the coefficient size/significance of economic variables
- Which Model is Preferred?
 - Fixed-Effects
 - Random-Effects
Data Sources

• State-level (lower 48) annual data from 2010 to 2016
• kWh consumption: Energy Information Administration (EIA)
• GDP: Bureau of Economic Analysis (BEA, Chained 2009$)
• Personal Income: BEA (Chained 2009$)
• Median Household Income: U.S. Census Bureau (2016$)
• Population: U.S. Census Bureau
• Degree Days: National Oceanic and Atmospheric Administration (NOAA)
• Energy Efficiency Scores: American Council for an Energy-Efficient Economy (ACEEE, scores range from 0 to 50 in increments of 0.5)
Variables and expected coefficient sign

• **Dependent Variable**
 • kWh per capita

• **Key explanatory variable**
 • Economic variables (inflation-adjusted)
 • Median Household Income
 • GDP per capita
 • Personal Income per capita

• **Control Variables**
 • Weather: Total Degree Days
 • Electricity Price (inflation-adjusted)
 • Energy Efficiency Score
State-Level: Distribution of Res. kWh/capita

- 2010 to 2013
- 2014 to 2016

Density

kWh per capita

2,000
4,000
6,000
8,000
Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Observations</th>
<th>Mean</th>
<th>Coefficient of Variation</th>
<th>10</th>
<th>25</th>
<th>50 (Median)</th>
<th>75</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>kWh_cap</td>
<td>336</td>
<td>4,766</td>
<td>0.26</td>
<td>3,183</td>
<td>3,540</td>
<td>4,862</td>
<td>5,805</td>
<td>6,393</td>
</tr>
<tr>
<td>HDD</td>
<td>336</td>
<td>5,022</td>
<td>0.40</td>
<td>2,157</td>
<td>3,571</td>
<td>5,307</td>
<td>6,483</td>
<td>7,591</td>
</tr>
<tr>
<td>CDD</td>
<td>336</td>
<td>1,171</td>
<td>0.67</td>
<td>321</td>
<td>557</td>
<td>1,000</td>
<td>1,619</td>
<td>2,344</td>
</tr>
<tr>
<td>TDD</td>
<td>336</td>
<td>6,193</td>
<td>0.22</td>
<td>4,445</td>
<td>5,231</td>
<td>6,148</td>
<td>7,169</td>
<td>8,021</td>
</tr>
<tr>
<td>MHHI</td>
<td>336</td>
<td>55,158</td>
<td>0.16</td>
<td>43,838</td>
<td>48,645</td>
<td>54,416</td>
<td>60,449</td>
<td>67,547</td>
</tr>
<tr>
<td>GDP_cap</td>
<td>336</td>
<td>46,917</td>
<td>0.18</td>
<td>36,326</td>
<td>40,158</td>
<td>45,562</td>
<td>52,123</td>
<td>61,163</td>
</tr>
<tr>
<td>PI_cap</td>
<td>336</td>
<td>42,399</td>
<td>0.12</td>
<td>36,540</td>
<td>38,483</td>
<td>41,995</td>
<td>45,198</td>
<td>48,446</td>
</tr>
<tr>
<td>kWh Price</td>
<td>336</td>
<td>12.55</td>
<td>0.22</td>
<td>9.75</td>
<td>10.53</td>
<td>11.76</td>
<td>13.86</td>
<td>17.32</td>
</tr>
<tr>
<td>Efficiency Score</td>
<td>336</td>
<td>19.36</td>
<td>0.54</td>
<td>7.50</td>
<td>11.00</td>
<td>17.50</td>
<td>25.50</td>
<td>35.50</td>
</tr>
</tbody>
</table>
Correlation Matrix (First Differences)

<table>
<thead>
<tr>
<th></th>
<th>kwh_cap</th>
<th>mhhh</th>
<th>PI_cap</th>
<th>GDP_cap</th>
<th>HDD</th>
<th>CDD</th>
<th>TDD</th>
<th>elec_price</th>
<th>effic</th>
</tr>
</thead>
<tbody>
<tr>
<td>kwh_cap</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mhhh</td>
<td>0.06</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI_cap</td>
<td>-0.1</td>
<td>0.13</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP_cap</td>
<td>0.08</td>
<td>0.13</td>
<td>0.57</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDD</td>
<td>0.57</td>
<td>0.06</td>
<td>-0.34</td>
<td>-0.02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDD</td>
<td>0.12</td>
<td>0.16</td>
<td>0.2</td>
<td>-0.01</td>
<td>-0.49</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>0.68</td>
<td>0.02</td>
<td>-0.31</td>
<td>-0.03</td>
<td>0.96</td>
<td>-0.24</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elec_price</td>
<td>-0.06</td>
<td>0.07</td>
<td>0.12</td>
<td>0.11</td>
<td>-0.01</td>
<td>-0.01</td>
<td>-0.01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>effic</td>
<td>-0.19</td>
<td>0.01</td>
<td>0.17</td>
<td>0.03</td>
<td>-0.06</td>
<td>-0.13</td>
<td>-0.1</td>
<td>-0.09</td>
<td>1</td>
</tr>
</tbody>
</table>
Models

1. Fixed-Effects

\[kWh_{\text{cap}}_{it} = \alpha_i + \beta_1 x_{1it} + \beta_2 x_{2it} + \cdots + \epsilon_{it} \]

\(kWh_cap\): Residential electricity consumption per person (the natural logarithm is used)

\(\alpha_i\): State-specific intercepts; \(i\): State; \(t\): Time period; \(x\): Time-varying covariates; these include the efficiency scores and the natural logarithms of the following variables: Median Real Household Income (MHHI); Real Gross Domestic Product per person (GDP_cap); Real Personal Income per person (PI_cap); Total Degree Days (TDD); Electricity Price.

2. Random-Effects

\[kWh_{\text{cap}}_{it} = \mu + \beta_1 x_{1it} + \beta_2 x_{2it} + \cdots + (u_i + \epsilon_{it}) \]

\(\alpha_i = \mu + u_i\); \((u_i + \epsilon_{it})\): Composite error term
Initial Regression Findings

- Hausman test prefers fixed-effects over random-effects in all specifications.

- Lead and lags of economic variables are insignificant, possibly due to a short number of periods.
Regression Results (Fixed Effects)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ln_Price</td>
<td>-0.0607**</td>
<td>-0.0563**</td>
<td>-0.0574**</td>
<td>-0.0595**</td>
<td>-0.0571**</td>
<td>-0.0583**</td>
</tr>
<tr>
<td></td>
<td>-0.0267</td>
<td>-0.0265</td>
<td>-0.0265</td>
<td>-0.0261</td>
<td>-0.0259</td>
<td>-0.0258</td>
</tr>
<tr>
<td>Ln_MHHi</td>
<td>0.0524**</td>
<td></td>
<td></td>
<td>0.0435*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-0.0248</td>
<td></td>
<td></td>
<td>-0.0244</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln_GDP_cap</td>
<td></td>
<td>0.0737*</td>
<td></td>
<td></td>
<td>0.0825*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.0446</td>
<td></td>
<td></td>
<td>-0.0435</td>
<td></td>
</tr>
<tr>
<td>Ln_PI_cap</td>
<td></td>
<td></td>
<td>0.1127**</td>
<td></td>
<td>0.1267**</td>
<td>-0.0519</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-0.0532</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ln_TDO</td>
<td>0.2879***</td>
<td>0.2879***</td>
<td>0.2986***</td>
<td>0.2826***</td>
<td>0.2820***</td>
<td>0.2908***</td>
</tr>
<tr>
<td></td>
<td>-0.0174</td>
<td>-0.0174</td>
<td>-0.0177</td>
<td>-0.017</td>
<td>-0.017</td>
<td>-0.0173</td>
</tr>
<tr>
<td>Time Trend</td>
<td>-0.0068***</td>
<td>-0.0069***</td>
<td>-0.0080***</td>
<td>-0.0068***</td>
<td>-0.0070***</td>
<td>-0.0083***</td>
</tr>
<tr>
<td></td>
<td>-0.0006</td>
<td>-0.0007</td>
<td>-0.001</td>
<td>-0.0006</td>
<td>-0.0007</td>
<td>-0.001</td>
</tr>
<tr>
<td>Efficiency Score</td>
<td></td>
<td></td>
<td></td>
<td>-0.0017***</td>
<td>-0.0019***</td>
<td>-0.0019***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.0005</td>
<td>-0.0005</td>
<td>-0.0005</td>
</tr>
</tbody>
</table>

	-1.2193	-1.23	-1.6257	-1.1528	-1.2007	-1.5876
Observations	336	336	336	336	336	336
R-squared (D)	0.9961	0.9961	0.9961	0.9963	0.9963	0.9963
R-squared (N)	0.6889	0.687	0.6889	0.7035	0.7035	0.7063

Standard errors in parentheses

* p<0.10 ** p<0.05 *** p<0.01

D: R-squared from using each coefficient for each covariate plus each dummy variable for the states
N: R-squared which subtracts out the effects of the groups (state dummy variables)
Conclusions

• National-level trends (2010-16)
 • Residential kWh declined while other sectors increased kWh
 • Weak income growth, lower real electricity prices, improved energy efficiency

• State-level regression analysis sought to estimate which economic variables were significant predictors of changes in electricity consumption, accounting for several control variables.
 • Fixed-Effects specification preferred to Random-Effects, with the following findings:
 • Economic variables significant at either 90% or 95% level, regardless of whether efficiency score is included
 • All control variables are significant
 • Electricity Price (Absolute Coefficient size 50% to 100% as large as economic variables)
 • Degree Days (Largest Coefficient of the natural log explanatory variables)
 • Efficiency Score
 • Time Trend (Still significant after including efficiency score, w/similar coefficient size)
Future Work

• Examine other Efficiency Measures
• Update Data
• Regions
 • Control for regional differences
 • More granular data (e.g., county-level)
• Examine other Economic Measures