The time-of-day travel demand elasticity paradox

Cody Nehiba

Louisiana State University

November 5, 2019
Motivation

- Energy efficiency programs used to correct market failures
Motivation

- Energy efficiency programs used to correct market failures
- Increasing a good’s energy efficiency lowers usage costs
Motivation

- Energy efficiency programs used to correct market failures
- Increasing a good’s energy efficiency lowers usage costs
- Leads to widely studied phenomenon known as the **rebound effect** (Gillingham et al., 2015; Jevons, 1865; Small and Van Dender, 2007)
Motivation

- Energy efficiency programs used to correct market failures
- Increasing a good’s energy efficiency lowers usage costs
- Leads to widely studied phenomenon known as the **rebound effect** (Gillingham et al., 2015; Jevons, 1865; Small and Van Dender, 2007)
- Direct rebound effect elasticity usually 0.1-0.4
Motivation

- Energy efficiency programs used to correct market failures
- Increasing a good’s energy efficiency lowers usage costs
- Leads to widely studied phenomenon known as the **rebound effect** (Gillingham et al., 2015; Jevons, 1865; Small and Van Dender, 2007)
- Direct rebound effect elasticity usually 0.1-0.4
 - Heterogeneity in rebound can have large implications
Rebound Effect Heterogeneity

Recent Research—estimates of rebound effect may vary across products, consumers, and regions (Barla et al., 2015; Gillingham and Munk-Nielsen, 2019; Knittel and Sandler, 2018; Nehiba, 2019; Spiller et al., 2017)
Recent Research—estimates of rebound effect may vary across products, consumers, and regions (Barla et al., 2015; Gillingham and Munk-Nielsen, 2019; Knittel and Sandler, 2018; Nehiba, 2019; Spiller et al., 2017)

- Given highly temporal nature of energy use issues, more important margin of heterogeneity may be time of day
Recent Research—estimates of rebound effect may vary across products, consumers, and regions (Barla et al., 2015; Gillingham and Munk-Nielsen, 2019; Knittel and Sandler, 2018; Nehiba, 2019; Spiller et al., 2017)

- Given highly temporal nature of energy use issues, more important margin of heterogeneity may be time of day

Research Question—Does the rebound effect from fuel economy standards vary by the time of day? Mechanisms?
This paper

- Estimate how fuel price elasticity of travel demand varies by time-of-day (direct rebound effect)
This paper

- Estimate how fuel price elasticity of travel demand varies by time-of-day (direct rebound effect)
 - Results present paradox—travel demand is *more* responsive to fuel prices during peak travel times
This paper

- Estimate how fuel price elasticity of travel demand varies by time-of-day (direct rebound effect)
 - Results present paradox—travel demand is *more* responsive to fuel prices during peak travel times
- Explore mechanisms
 - Some evidence for public transit availability and lumpiness in commute decisions
This paper

- Estimate how fuel price elasticity of travel demand varies by time-of-day (direct rebound effect)
 - Results present paradox—travel demand is *more* responsive to fuel prices during peak travel times

- Explore mechanisms
 - Some evidence for public transit availability and lumpiness in commute decisions

- Policy implications for fuel economy standards and gasoline taxes
 - CAFE standards are welfare reducing
770 million hourly vehicle counts from universe of traffic sensors in U.S. 2013-2016
Data

- 770 million hourly vehicle counts from universe of traffic sensors in U.S. 2013-2016

- Webscraped fuel prices from GasBuddy.com to get weekly county avg. price for 339 counties
Data

- 770 million hourly vehicle counts from universe of traffic sensors in U.S. 2013-2016

- Webscraped fuel prices from GasBuddy.com to get weekly county avg. price for 339 counties

- Trip-level data from National Household Travel Survey with confidential county identifiers
Estimating Travel Demand Elasticities

▶ OLS estimates of effect of fuel prices on travel demand biased towards zero

▶ Gasoline content regulations as an IV for fuel prices

IV Assumptions

▶ Seasonal pollution controls to combat ground-level ozone

▶ Within county seasonal regulatory variation

Estimation Map

▶ Estimate a model for each county and hour-of-day (339*24 estimates)

Estimating Equations
Estimating Travel Demand Elasticities

- OLS estimates of effect of fuel prices on travel demand biased towards zero
 - Gasoline content regulations as an IV for fuel prices

- IV Assumptions
Estimating Travel Demand Elasticities

- OLS estimates of effect of fuel prices on travel demand biased towards zero
 - Gasoline content regulations as an IV for fuel prices
 - Seasonal pollution controls to combat ground-level ozone
Estimating Travel Demand Elasticities

- OLS estimates of effect of fuel prices on travel demand biased towards zero
 - Gasoline content regulations as an IV for fuel prices
 - Seasonal pollution controls to combat ground-level ozone
 - Within county seasonal regulatory variation

IV Assumptions

Regulation Map

Estimating Equations
Estimating Travel Demand Elasticities

- OLS estimates of effect of fuel prices on travel demand biased towards zero
 - Gasoline content regulations as an IV for fuel prices
 - Seasonal pollution controls to combat ground-level ozone
 - Within county seasonal regulatory variation
 - Estimate a model for each county and hour-of-day (339*24 estimates)
Main Result

T-stats

Graph showing the elasticity estimate over the hour of the day.
Weekday and weekend estimation
Urban-rural divide

![Graph showing elasticity estimates by hour-of-day for different metro areas.](image)
Policy Implications

Panel A: Baseline Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak congestion costs per mile</td>
<td>$0.05</td>
</tr>
<tr>
<td>Off-peak congestion costs per mile</td>
<td>$0.00</td>
</tr>
<tr>
<td>Pollution costs per gallon</td>
<td>$0.34</td>
</tr>
</tbody>
</table>

Panel B: CAFE Results (Increase Avg. MPG By 1)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta) Gallons (millions)</td>
<td>-3,059</td>
</tr>
<tr>
<td>(\Delta) VMT (millions)</td>
<td>+ 56,942</td>
</tr>
<tr>
<td>(\Delta) Welfare from (\Delta) VMT (millions)</td>
<td>+$112.6</td>
</tr>
<tr>
<td>Pollution Benefit (millions)</td>
<td>+$1,041</td>
</tr>
<tr>
<td>Congestion Benefit (millions)</td>
<td>-$2,024</td>
</tr>
<tr>
<td>Net (\Delta) Welfare (millions)</td>
<td>-$870.4</td>
</tr>
</tbody>
</table>

Panel C: Gas Tax Results (Increase Per Gallon Gas Tax by $0.1682)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta) Gallons (millions)</td>
<td>-3,059</td>
</tr>
<tr>
<td>(\Delta) VMT (millions)</td>
<td>-73,736</td>
</tr>
<tr>
<td>(\Delta) Welfare from (\Delta) VMT (millions)</td>
<td>-$108.6</td>
</tr>
<tr>
<td>Pollution Benefit (millions)</td>
<td>+$1,041</td>
</tr>
<tr>
<td>Congestion Benefit (millions)</td>
<td>+$2,685</td>
</tr>
<tr>
<td>Net (\Delta) Welfare (millions)</td>
<td>+$3,617.4</td>
</tr>
</tbody>
</table>
Conclusion

- Analysis of energy efficiency programs has ignored important temporal variation in rebound effects
Conclusion

- Analysis of energy efficiency programs has ignored important temporal variation in rebound effects
- Examined heterogeneity of fuel price elasticity of travel demand across hour of day
Conclusion

- Analysis of energy efficiency programs has ignored important temporal variation in rebound effects
- Examined heterogeneity of fuel price elasticity of travel demand across hour of day
 - Results present a paradox–drivers are more responsive to fuel prices during rush hour
Conclusion

- Analysis of energy efficiency programs has ignored important temporal variation in rebound effects.
- Examined heterogeneity of fuel price elasticity of travel demand across hour of day.
 - Results present a paradox—drivers are more responsive to fuel prices during rush hour.
 - Explored mechanisms—some evidence transit availability drives results.
Conclusion

- Analysis of energy efficiency programs has ignored important temporal variation in rebound effects
- Examined heterogeneity of fuel price elasticity of travel demand across hour of day
 - Results present a paradox—drivers are more responsive to fuel prices during rush hour
 - Explored mechanisms—some evidence transit availability drives results
- Policy simulation suggests CAFE standards reduce welfare
Thank you
Cody Nehiba
cnehiba@lsu.edu
T-stats

8 am

T-statistic distribution

11 pm

T-statistic distribution
Gasoline Content Regulation Instrument Validity

- Instrument Relevance

 Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- Instrument Exogeneity

 Entire U.S. has a gasoline content regulation

 Regulation stringency determined by:
 - Weather–ozone formation requires warm sunny weather, so warmer regions received more stringent regulations
 - Past travel demand–not contemporaneous travel demand

 Very little change in regulations over the sample period (2013-2016)

 Instruments plausibly exogenous conditional on weather controls and location fixed effects
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
 - Entire U.S. has a gasoline content regulation
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
 - Entire U.S. has a gasoline content regulation
 - Regulation stringency determined by:
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
 - Entire U.S. has a gasoline content regulation
 - Regulation stringency determined by:
 - Weather–ozone formation requires warm sunny weather, so warmer regions received more stringent regulations
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
 - Entire U.S. has a gasoline content regulation
 - Regulation stringency determined by:
 - Weather—ozone formation requires warm sunny weather, so warmer regions received more stringent regulations
 - Past travel demand—not contemporaneous travel demand
Gasoline Content Regulation Instrument Validity

- **Instrument Relevance**
 - Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

- **Instrument Exogeneity**
 - Entire U.S. has a gasoline content regulation
 - Regulation stringency determined by:
 - Weather—ozone formation requires warm sunny weather, so warmer regions received more stringent regulations
 - Past travel demand—not contemporaneous travel demand
 - Very little change in regulations over the sample period (2013-2016)
Gasoline Content Regulation Instrument Validity

▶ **Instrument Relevance**
 ▶ Increase refining costs and segment fuel markets (Auffhammer and Kellogg, 2011; Brown et al. 2008; Chakravorty et al., 2008; Muehlegger, 2006)

▶ **Instrument Exogeneity**
 ▶ Entire U.S. has a gasoline content regulation
 ▶ Regulation stringency determined by:
 ▶ Weather–ozone formation requires warm sunny weather, so warmer regions received more stringent regulations
 ▶ Past travel demand–not contemporaneous travel demand
 ▶ Very little change in regulations over the sample period (2013-2016)
 ▶ Instruments plausibly exogenous conditional on weather controls and location fixed effects
Gasoline Content Regulations

Notes: The figure illustrates gasoline content regulations across the U.S. as of December 2016.
Elasticity Estimating Equations

Estimate a model for each county and hour-of-day (339*24 estimates)
Estimate a model for each county and hour-of-day (339*24 estimates)

First stage
\[
\ln(P_{it}) = \tau + \delta \cdot R_{it} + \phi \cdot X_{it} + \mu_i + \rho_t + \nu_{it}
\]

Second Stage
\[
\ln(V_{it}) = \omega + \eta \cdot \ln(\hat{P}_{it}) + \psi \cdot X_{it} + \mu_i + \rho_t + \epsilon_{it}
\]

- \(i=\)traffic sensor, \(t=\)day-of-sample
- \(P=\)gas price, \(R=\)gasoline content regulations, \(V=\)vehicle counts, \(X=\)weather, \(\mu=\)sensor fixed effect, and \(\rho=\)day-of-week, and month-of-year fixed effects
- \(\eta=\)travel demand elasticity