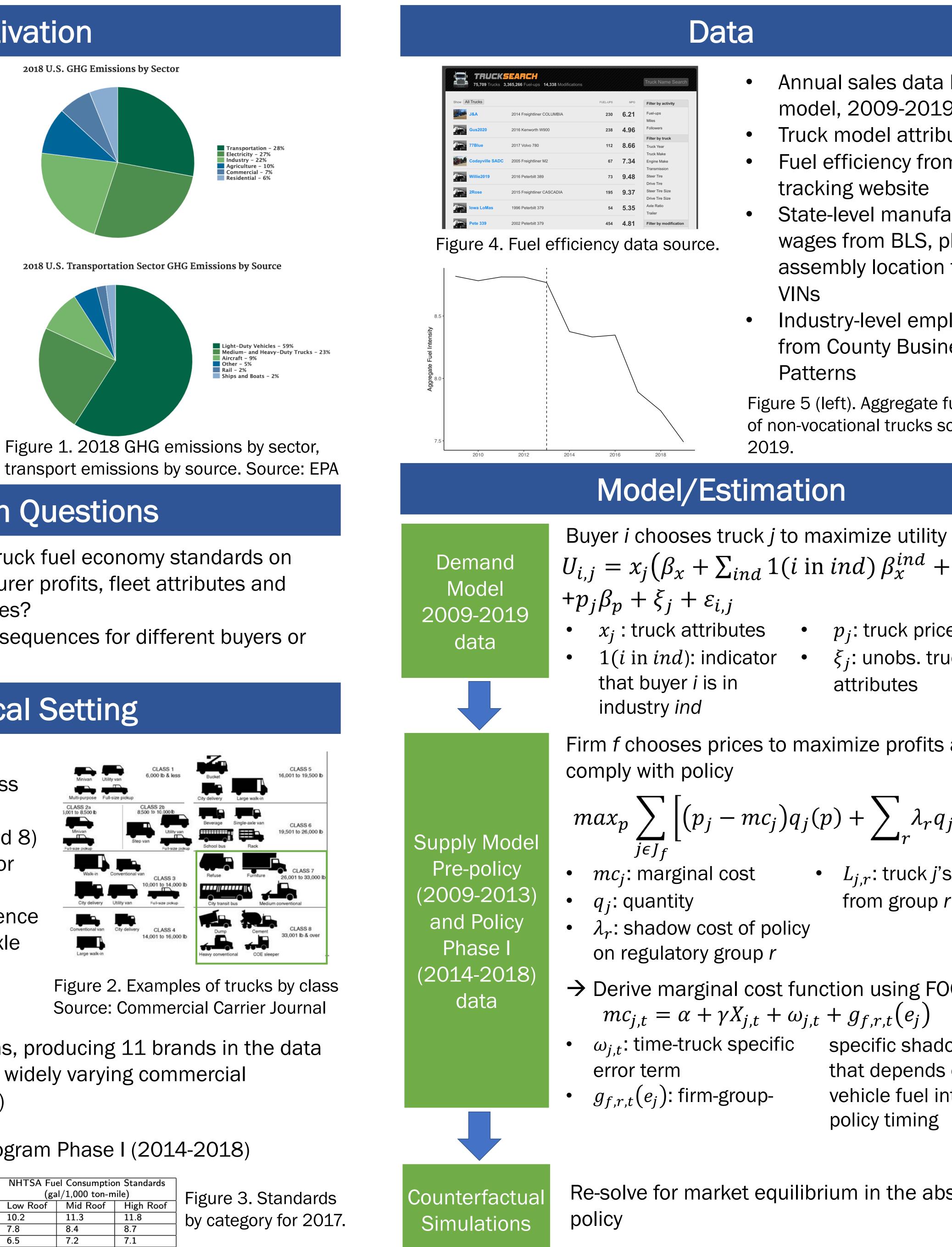

The Effects of Heavy-Duty Vehicle Fuel Economy Standards

Motivation

- The transportation sector is the largest contributor to US greenhouse gas emissions (28% as of 2018)
- Trucks are < 10% of vehicles on the road, 20% of transport CO₂ emissions
- Fuel efficiency regulations were only imposed recently (announced in 2011, implemented in 2014), virtually no ex post research exists on truck policies

2018 U.S. GHG Emissions by Sector


Research Questions

- What is the effect of recent truck fuel economy standards on consumer welfare, manufacturer profits, fleet attributes and safety, environmental damages?
- Are there heterogeneous consequences for different buyers or manufacturers?

Empirical Setting

Truck Characteristics

- Vehicles characterized by gross vehicle weight rating
- Heavy duty trucks (class 7 and 8) can be combination tractors or vocational vehicles
- Buyers also care about: presence of sleeper cab, roof height, axle configuration, fuel intensity...

Market

- Truck manufacturers: 8 firms, producing 11 brands in the data
- Truck buyers: use trucks for widely varying commercial purposes (especially freight)

Policy: Heavy-Duty National Program Phase I (2014-2018)

	EPA Emissions Standards			NHTSA Fuel Consumption Standards			
	(g CO ₂ /ton-mile)			(gal/1,000 ton-mile)			
	Low Roof	Mid Roof	High Roof	Low Roof	Mid Roof	High Roof	
Day Cab Class 7	104	115	120	10.2	11.3	11.8	
Day Cab Class 8	80	86	89	7.8	8.4	8.7	
Sleeper Cab Class 8	66	73	72	6.5	7.2	7.1	

Stephanie M. Weber Yale School of the Environment

- Annual sales data by model, 2009-2019 Truck model attributes
- Fuel efficiency from fuel tracking website
- State-level manufacturing wages from BLS, plant assembly location from VINs
- Industry-level employment from County Business Patterns
- Figure 5 (left). Aggregate fuel intensity of non-vocational trucks sold, 2009-2019.

- $U_{i,j} = x_j \left(\beta_x + \sum_{ind} 1(i \text{ in } ind) \beta_x^{ind} + \beta_x^u\right)$
 - p_i : truck price
 - ξ_i : unobs. truck attributes
- Firm *f* chooses prices to maximize profits and

 $max_p \sum \left| \left(p_j - mc_j \right) q_j(p) + \sum \lambda_r q_j(p) L_{j,r} \right|$

- $L_{i,r}$: truck j's distance from group *r* standard
- \rightarrow Derive marginal cost function using FOCs

$+\omega_{j,t}$	$+ g_{f,r,t}(e_j)$
cific	specific shadow cost
	that depends on
p-	vehicle fuel intensity,
	policy timing

Re-solve for market equilibrium in the absence of

Supply and demand estimates:

	logit	random coeffs		(1)	(2)	(3)	(4)	(5)
Mean parameters	0		Post-standard	13.04	40.92	4.03	26.31	-16.61
Prices	-0.02	-0.015		(8.19)	(8.2)	(8.52)	(14.57)	(12.84)
	(0.004)	(0.004)	Post-standard \times fuel intensity	-0.7	0.83	0.85	2.23	2.97
GVW	0.888	0.568	v	(0.77)	(0.73)	(0.72)	(1.51)	(1.32)
	(0.457)	(0.45)	Post-standard \times sleeper	-30.09	-51.05	-48.16	-41.4	-38.33
Class 7 day cab	2.729	3.258		(13.86)	(12.25)	(12.07)	(12.09)	(11.95)
	(0.54)	(0.531)	Post-standard \times sleeper \times fuel intensity	3.81	(12.20) 5.45	(12.07) 5.11	(12.00) 4.37	4.02
Class 8 day cab	1.385	1.744	$10st$ -standard \times sleeper \times ruer intensity					
	(0.444)	(0.435)		(1.49)	(1.31)	(1.3)	(1.3)	(1.28)
Sleeper cab	2.131	2.492	$PACCAR \times Post-standard$		-52.28	-5.74	-26.17	25.56
	(0.631)	(0.619)			(3.21)	(5.35)	(17.59)	(16.64)
4×2 axle config.	0.265	0.304	Navistar \times Post-standard		-22.42	10.82	0.2	39.73
	(0.099)	(0.099)			(3.8)	(6.94)	(18.61)	(17.61)
6×4 axle config.	2.403	2.475	Daimler \times Post-standard		-58.77	-7.21	-76.43	-15.97
	(0.096)	(0.094)			(3.25)	(5.79)	(16.24)	(15.16)
8×4 , 8×6 axle config.	0.192	0.125	$PACCAR \times fuel intensity \times Post-standard$		· · ·		-2.57	-3.23
	(0.142)	(0.14)					(1.85)	(1.7)
Medium conventional cab	-0.217	-0.133	Navistar \times fuel intensity \times Post-standard				-2.43	-3.08
	(0.12)	(0.118)	1000000000000000000000000000000000000				(2.03)	
Non-conventional cab	0.139	0.278	Deimler v feelistereite v Dest ster land				· /	(1.88)
	(0.166)	(0.163)	Daimler \times fuel intensity \times Post-standard				2.06	0.98
Fuel Intensity (FI)	0.114	0.166					(1.73)	(1.55)
	(0.046)	(0.045)	Average	Policy Co	\mathbf{st}			
$Day \times FI$	-0.162	-0.261	PACCAR Day Cab	4.98	-1.82	8.01	-3.67	5.97
	(0.056)	(0.055)	PACCAR Sleeper	10.56	-6.50	3.16	-5.30	4.11
Sleeper \times FI	-0.189	-0.302	Navistar Day Cab	6.60	26.12	22.61	24.69	22.13
	(0.084)	(0.082)			19.86			17.45
Constant	-5.786	-6.272	Navistar Sleeper	8.83		16.40	19.92	
	(0.943)	(0.92)	Daimler Day Cab	6.45	-10.06	4.76	-9.88	4.41
Buyer attribute interactions			Daimler Sleeper	8.06	-18.04	-3.10	-21.35	-6.38
Vocational \times Construction	_	0.531	Volvo Day Cab	6.31	48.88	12.14	47.68	11.79
	_	(0.011)	Volvo Sleeper	8.98	42.57	5.86	40.32	3.70
Vocational \times General Freight	_	-2.176	Eine EE	1	/	/	/	/
W at los C to t	_	(0.002)	Firm FE	v	V	v	v	~
Vocational \times Sanitation	_	0.493	$Firm \times fuel intensity$				✓	·
W C LOC IL LU L	_	(0.013)	$Firm \times time$			~		✓
Vocational \times Specialized Hauling	_	-0.106 (0.019)						

 Table 1. Demand model estimated

with and without industry preferences.

Counterfactual results:

- increase
- Increased profit: \$4-\$6B

	% Change Prof
PACCAR	+4 to $10%$
International	+1 to $7%$
Daimler	+3 to $13%$
Volvo	-8 to +4%

Table 3. Change in profits by manufacturer of non-vocational vehicles.

- increased up to 7%

Findings and Next Steps

- alternative vehicles
- Future work:
- Environmental damages

Results

Table 2. Estimates of the policyinduced components of marginal cost for non-vocational vehicles.

• Under policy, consumers worse off and manufacturer profits

Compensating variation: \$27 -\$47M

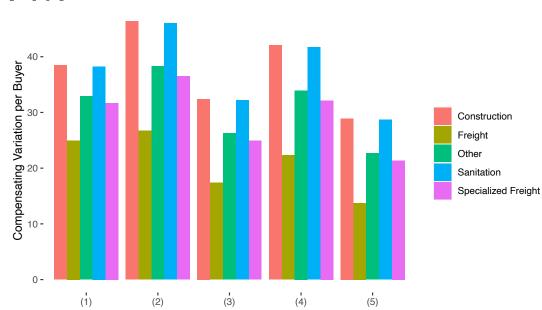


Figure 6. Compensating variation by industry across model specifications.

Characteristics of vehicles sold change:

Fuel intensity improved by .5-1.5%

• GVW of day and sleeper cabs increased .3-2%

Sales-weighted average prices fell, but average price

Truck fuel economy standards benefited many manufacturers Consumers, esp. sanitation and construction buyers, were made worse off because it was harder for these buyers to switch to

Policy had indirect effects on safety, road damage via GVW

Additional counterfactual simulations of alternative policy specifications (uniform policy, mpg-based policy)