
International Association for Energy Economics
Houston

June 2006

Iraj Isaac Rahmim, PhD
E-MetaVenture, Inc.
Houston, Texas
Introduction

- Recent interest in GTL technology and its products
- Units to come on line in the next 5 years
- What is GTL?
- How might it impact the global energy and petroleum products markets?
Key GTL Steps

- Production of synthesis gas ("syngas"):
 - Partial oxidation: $\text{CH}_4 + \text{O}_2 \rightarrow \text{CO} + 2 \text{H}_2$ (exothermic)
 - Steam reforming: $\text{CH}_4 + \text{H}_2\text{O} \rightleftharpoons \text{CO} + 3 \text{H}_2$ (endothermic)

- Fischer-Tropsch synthesis
 - $\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_2{\text{--}} + \text{H}_2\text{O}$ (very exothermic)
Sample GTL Product Slate
50 MBD Plant

<table>
<thead>
<tr>
<th></th>
<th>No HC (MBD)</th>
<th>With HC (MBD)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| LPG | 1 | 2 | • Similar to other plant (LNG, refinery) LPG
 | | | • Can be co-processed and marketed with them |
| Naphtha | 4 | 13 | • Straight chain paraffinic
 | | | • Near zero sulfur
 | | | • Preferred use: steam cracker feed |
| **Diesel** | 25 | 35 | • High cetane
 | | | • Near zero sulfur
 | | | • Low density
 | | | • Low aromatics |
| Lubes | 15 | <1 | • High grade
 | | | • Low volatility
 | | | • Low pour point
 | | | • Low viscosity
 | | | • Low sulfur |
| Wax | 5 | <1 | • n-paraffins
 | | | • High quality |

E-MetaVenture, Inc.
GTL Drivers

- Reduction in cost of transport of NG
 - Monetization of stranded natural gas
 - Economic utilization of associated gas

- High current and projected demand for liquid transportation fuels
 - Higher costs tied in with crude markets and refining capacity issues
 - Clean fuels

- Flaring reduction and environmental concerns
Natural Gas Transport Mechanisms

After “Natural Gas Production, Processing, Transport” by Rojey et al.
4.1 TCF Natural Gas Flared in 2000
Excluding FSU

<table>
<thead>
<tr>
<th>Region</th>
<th>BCF Flared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>1,640</td>
</tr>
<tr>
<td>Middle East</td>
<td>923</td>
</tr>
<tr>
<td>Central and South America</td>
<td>569</td>
</tr>
<tr>
<td>North America</td>
<td>524</td>
</tr>
<tr>
<td>Far East</td>
<td>296</td>
</tr>
<tr>
<td>Europe</td>
<td>148</td>
</tr>
</tbody>
</table>

After World Bank
A. D. Little, Inc. Study (2000)
GTL-FT CAPEX Reduction Due to Improved Technology

- Capacity differences
- Lube and wax manufacture v. no lube/wax
- Financing structure
- Short-term v long-term (increased capacity) case
- Technology differences
- Current claims in $25,000-35,000/Bbl range
Key Commercial GTL Plants in E&C

<table>
<thead>
<tr>
<th>Company</th>
<th>Location</th>
<th>Size (BPD)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sasol Chevron QP</td>
<td>Ras Laffan, Qatar (“Oryx GTL”)</td>
<td>33,700</td>
<td>2006 completion; Technip-Coflexip; $850 MM; studying increase to 100 MBD by 2009</td>
</tr>
<tr>
<td>Sasol ChevronTexaco</td>
<td>Escravos, Nigeria</td>
<td>34,000</td>
<td>? completion; FW; $1,200 MM</td>
</tr>
<tr>
<td>Shell QP</td>
<td>Qatar (“Pearl”)</td>
<td>140,000</td>
<td>2009 completion Two phases</td>
</tr>
<tr>
<td>ExxonMobil QP</td>
<td>Qatar</td>
<td>150,000</td>
<td>2011 completion</td>
</tr>
</tbody>
</table>

Over 50 other projects (total capacity ~2 million BPD) at different phases (study, planning, preliminary design) in African, Americas, Middle East and Asia, and Australia.
Projected Natural Gas used by GTL

GTL Proj~2% world consumption

- Developing
- Eastern Europe/Former Soviet Union
- Industrialized
GTL Diesel
Automotive Diesel/Mid. Dist. Market
Historical

- Global middle-distillate market: 27 MMBD
 Approx. 3% annual growth
 14 MMBD automotive diesel
Growth Projections (1)

- Europe: increase in diesel-powered autos
 - Currently over 60% of auto sales in France and Austria
 - Emission mandates, jurisdictional tariff strategies, improved auto designs, increased low-emission fuel availability

- US: driven by commercial sector and tied to overall economy growth (average about 5% annual)
 - Light diesel vehicles 4% of total market
 - Regional and regulatory efforts are likely to increase diesel auto usage

- Asia-Pacific: rapid yet uncertain growth
 - China factor: 8-10% annual economic growth; loosely correlated to diesel fuel usage
Growth Projections (2)

- Globally: diesel powered autos at about 30%
 - Projected to grow to about 40% by middle of next decade
 - Followed by partial replacement with hybrids

- Overall:
 - Projected middle distillates demand to grow by 3% annual
 - To 44 MMBD in 2020
 - 22.5 MMBD automotive diesel
Global Middle Distillates Projection

Middle Distillate Consumption (MBD)

- Projected Total at 3% growth
- Rest of World (Excl FSU)
- Asia Pacific
- Europe
- North America

- 1977
- 1987
- 1995
- 2000
- 2005
- 2010
- 2015
- 2020
Question: what is the potential impact of GTL on this market?
GTL Diesel Supply Projections

- A large number of potential projects
- Only a small fraction are likely to be built short-term

- Qatar: self-described GTL capital
 - Oryx I: 2006 start up
 - Shell Pearl: 2009
 - ExxonMobil: 2011

- California Energy Commission estimate:
 - 2010: 75 MBD global GTL diesel capacity (seems low)
 - 2015: 388 MBD
 - 2020: 800 MBD

- Sasol Chevron estimate: 600 MBD by 2016-2019
GTL Diesel v. Global Middle Distillates

- Small as fraction of total diesel supply (less than 3% by 2020)
- Unlikely to impact global market greatly
Potential Impact on Local Diesel Markets

- GTL supply could potentially form a significant portion of a region’s diesel
 - Example: Shell estimates one large GTL plant would fully satisfy the city of London and 10 plants would satisfy PADD V

- Possible to develop a critical mass of GTL diesel as blendstock for a small market
 - Example: Shell Bintulu has offered 30% Pura throughout Thailand
 - Also sold as blendstock in Greece, Germany, and South Africa
Comments on GTL Diesel Quality

- Virtually no sulfur
- Very low aromatics
- Highly paraffinic ➔ typical cetane numbers in 70-80
- Lower density than refinery diesel
 - 0.77-0.80 Kg/L v. 0.83-0.85 Kg/L
 - ➔ Density premium
 - ➔ Perceived lower fuel efficiency (in MPG)
- Relatively poor cold-start; low lubricity
- A number of studies (90s) show a premium of 5-10 ¢/gal
GTL Diesel Quality & Effect of Regulatory Environment

- Regulations on
 - Fuel composition
 - Emissions
 - “Alternative” fuel content (e.g., biofuels)

- Fuel composition regulations:
 - Tightening standards for light and heavy-duty diesel vehicles
 - Expected to continue to tighten
 - Sulfur, aromatics, PNAs
 - US, WE, Japan: sulfur down to 10-50 ppm
 - Developing world: mandates down to 200-1000 ppm
The Evolving Diesel Sulfur Content Regulations

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>500</td>
<td>500</td>
<td>350</td>
<td>500</td>
<td>50</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>500</td>
<td>350</td>
<td>50</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>2000</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Bangladesh</td>
<td></td>
</tr>
<tr>
<td>Cambodia</td>
<td>2000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>PRC</td>
<td>5000</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Hong Kong</td>
<td>500</td>
<td>1000</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ROK</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Pakistan</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>5000</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Taiwan</td>
<td>500</td>
<td>350</td>
<td>500</td>
<td>350</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>500</td>
<td>350</td>
<td>500</td>
<td>350</td>
<td>50</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vietnam</td>
<td>10000</td>
<td></td>
</tr>
</tbody>
</table>

Key: >5000 ppm | 501-3000 | 3001-5000 | 51-500 | 16-50 | <50

Source: Pytte (22)
GTL Diesel Emissions

- A number of studies demonstrated tailpipe emission benefits
 - Neat or in blends
 - Compared to both conventional as well as reformulated

- Typical examples of tailpipe emission results:
 - 40-50% reduction in HC, 9% in NOx, 30% in particulates when compared with low-sulfur refinery diesel
 - Benefits with current as well as new engine technologies (Euro-4 and Euro-5) using neat and blend GTL diesel

- Well-to-Wheel: no great benefit for GTL diesel
 - Shifts CO₂ emissions from auto to plants (away from population centers; potential for sequestration)
Likely GTL Diesel Scenario

- Pure GTL diesel would require separate infrastructure and auto modifications.

- In jurisdictions with very tight specifications, volume of GTL required would be very high.

- Most likely use: as a premium blendstock to bring slightly off-spec diesel into compliance.

- Competition:
 - HT in refineries, improvement in FCCs and other units.
 - Biofuels.
 - GTL diesel sulfur premium might erode.
 - Some observers: GTL diesel premium will be primarily due to its high cetane and low aromatics.
In Summary

- After many decades of discussion and R&D GTL new GTL plants will on stream within the decade

- GTL is capable of producing high quality diesel as well as lubes and waxes

- GTL is unlikely to have a major impact on the global diesel markets
 - Can be a positive component in meeting high quality blend-stock demands

- GTL lubes (and waxes) can have a significant effect on the worldwide pool
Acknowledgments

- Ms. Amy Claxton of My Energy
- Ms. Barbara R. Shook of Energy Intelligence Group
- Dr. Carl J. Verbanic of Wax Data
Contact Information

Iraj Isaac Rahmim, PhD
E-MetaVenture, Inc.
P. O. Box 271522
Houston, Texas 77277-1522
USA
Telephone: USA (713) 446-8867
Email: iir@e-metaventure.com
www.e-metaventure.com