Global Warming and Carbon Management – Timing, Costs, Priorities

Dual Plenary Session
28th USAAE/IAEE North American Conference

Steven Bryant
Associate Professor
Dept. of Petroleum and Geosystems Engineering
Director, Joint Industry Project on Geologic CO₂ Storage
Center for Petroleum and Geosystems Engineering

The University of Texas at Austin
Key Issues for Geologic Carbon Sequestration

• Motivation
 – Carbon capture and storage (CCS) is necessary for stabilization of CO₂ levels in atmosphere
 – CCS alone is not sufficient for stabilization
 – Time is of the essence
 • Geologic carbon storage (GCS) technology available now
Anthropogenic CO_2 emissions comparable to net fluxes in Earth’s carbon cycle

CCS necessary – but not sufficient

Wedges of CO₂ emissions

Pacala and Socolow, *Science* **305**:968, 2004
CCS necessary – but not sufficient
Key Issues for Geologic Carbon Sequestration

• Feasibility
 – GCS must be implemented at scale of existing oil & gas industry
 – Storage capacity estimates are not time-weighted
 – Two prerequisites for CCS industry
 • Price for carbon
 • Regulatory framework
Storing 1 Gt/y carbon is same magnitude as current global oil and gas business

- One wedge of CO₂ sequestration
 - Injection rate at deep aquifer conditions
 - 17 million m³/d
 - 100 MMBD
 - Transportation from sources to sinks
 - 190 BCFD

- Global upstream business, 2007
 - Oil consumption
 - 13 million m³/d
 - 85 MMBD
 - Gas production
 - 285 BCFD
 - Permian Basin CO₂ pipeline capacity for enhanced oil recovery
 - 4 BCFD
Key Issues for Geologic Carbon Sequestration

• Hurdles
 – Single biggest gap
 • Lack of human capital: subsurface engineers
 – Single biggest environmental risk
 • Avoid displacing brine into groundwater
 – Single biggest legal difficulty
 • Acquiring rights to vast volume of pore space
 – Single biggest political/economic risk
 • Getting public to pay
 – Single biggest technical risk
 • Low-cost assurance of secure storage
Demand for Subsurface Engineers by Oil & Gas (US) will Strain Education Capacity for Next 20 Years

Demographics of US oil & gas industry

OVER HALF OF THE WORKFORCE ELIGIBLE TO RETIRE IN NEXT 10 YEARS

Source: U.S. Dept of Labor

Global Oil and Gas Study
Subsurface Engineering Educational Capacity in the US is Already Full

U.S. Petroleum Engineering Enrollment

- PhD
- MS
- Senior
- Junior
- Sophomore
- Freshman

2.5 times growth in 4 years
GCS and Brine Displacement

- Conventional CO$_2$ storage
 - Displaces equal volume of brine
 - Pressure elevation extends farther than CO$_2$

- Unconventional CO$_2$ storage
 - Deep ocean sediment
 - Deep ocean basalt
 - Surface dissolution
 - Inject saturated brine
Natural gas storage industry as analogue to GCS industry

• Natural gas storage
 – 8 TCF (in US)
 – Typical project 75 BCF

• CO₂ storage
 – Cumulative (in US to 2050) ~100 Gt CO₂
 • Need pore space equivalent to 750 TCF natural gas
 – Typical project ~100 Mt CO₂
 • 700 BCF natural gas pore space equivalent
Curry et al., GHGT7, paper 137. Will citizens pay for solutions to GHG emissions?

Figure 4. Response to: If it solved global warming, would you be willing to pay ___ more per month on your electricity bill? Percentage of respondents who answered “yes” to each dollar amount is shown.
Substantive Carbon Storage Will Require Regulation Comparable to Oil & Gas, USDW
GCS and Leakage Risk

- Conventional CO\(_2\) storage
 - Density CO\(_2\) less than density of brine

- Unconventional CO\(_2\) storage
 - Deep ocean sediment
 - Deep ocean basalt
 - Surface dissolution
 - Inject saturated brine
 - No bulk phase CO\(_2\) in subsurface