Transition of Energy Infrastructures

Using ABM to compare CO₂ policies for CO₂ reduction in power generation

Emile J. L. Chappin
July 5, 2009

Faculty of Technology, Policy and Management,
Energy and Industry Group
E.J .L.Chappin@TUDelft.NL
Context of the energy transition

- Complex, highly developed industrial societies
- Interconnected systems, diverse and large
- Infrastructure sector reforms
 - Liberalized energy sectors
 - Increased complexity
 e.g. by unbundling and introduction of new markets
- New requirements, such as for CO₂, renewables,
 - In addition to flexibility, affordability, acceptability
Agent-based model of an energy transition

- Enabling transition in power generation sector to low carbon electricity generation

- Which carbon policy will do the job?
 - Carbon *emission trading*
 - EU implemented, need to acquire rights
 - Carbon *taxation*
 - Need to pay tax
 - No intervention
Relevant actors and their interaction

Agent (node):
- Identity / style
- Strategic management: rules for investment in physical assets
- Operational management: control rules for physical assets

Physical Asset (node):
- Physical properties
- Economic properties
- Design properties

Edges:
- Ownership of physical assets
- Contracts with other agents
- Physical flows to/from other physical assets

七月 5, 2009
Agents

- Producers and Consumers of Electricity
- Government and Markets

Installations and Products

- Power Plants
- Industrial Facilities
- Consumer Products
Running the Model
electricity prices:
emission trading

carbon taxation

no intervention

CO₂ price
emission trading

CO₂ taxation
Impact is caused by difference in portfolio evolution - no intervention

[Graph showing portfolio evolution over time with different energy sources.]
Impact is caused by difference in portfolio evolution – emission trading
Impact is caused by difference in portfolio evolution - carbon taxation
Observations

The model shows potential *transitions*

The *agents* are the motor of transitions by competition for power generation through ‘the market’.

They are *constrained* and *enhanced* by external trends/properties.

Government can as an actor – to a limited amount – influence this by implementing policy.
Conclusions

• Emission reduction:
 • Carbon policies do deliver in the long run.
 • The first 10-15 years, CO₂ emissions continue to increase.
 • Without intervention, emission levels grow dramatically.

• Electricity prices / investment risk:
 • A fundamental difference in investment risk can result in a severe investment cycle under emission trading.
 • Carbon taxation leads to lower electricity prices than emission trading.

• Both instruments create pain today.
• Affordable and competitive low-CO₂ electricity generation options must become available on a large scale.
Conclusions

• Example shows that making an energy transition simulation model is possible.

• Agent-based model seems to fit the objective, allowing for emergent properties and intuitive/natural conceptualization of actors, interaction and technology.

• Explication is a necessity.

• Comparison of the two policies is not easy, there are methodological issues.

• Agent-based models provide understanding and insight in the system and provide hints for intervention.
Key references

Thanks for your attention