Integrated Electricity and Natural Gas Market Modeling

- The Effects of Market Liberalization in Europe -
Agenda

1. Introduction

2. Methodology (Model)

3. Selected Results

4. Conclusion
Research Question

• “Old World“ of the Continental European Gas Market
 – Natural gas sold to power stations by importers / producers in LT contracts at substitute-indexed prices, no resale obligations
 – Hence, price independent of natural gas market fundamentals (supply, demand, infrastructure availability), instead net-back prices for all power generators (limited locational differentiation)

• Natural Gas Market Liberalization (“New World“)
 – Resale obligations challenged / prohibited legally
 – Emergence of liquid natural gas trading points -> reference prices for natural gas usage in power generation

➢ What is the impact of natural gas market liberalization on dispatch and investment decisions in the power sector?
Literature

- no studies with large-scale energy market models
- empirical papers with focus on price relationship:
 - Woo et al. (2003): bi-directional Granger causality, CA 1999-2004
 - Asche et al. (2006): price integration only during times of autarky, UK 1995-1998
- theoretical interactions / analytical papers:
 - demand pull vs. supply push
 - Routledge et al. (2001): price linkage persists even when natural gas is not marginal generation technology
 - Joskow & Kahn (2002)
- simulations with fictional energy systems (usually OR-focus)
 - Geidl and Andersson (2006): favourable characteristics (gas storage vs. transmission of electricity) best exploited in integrated market
Agenda

1. Introduction

2. Methodology (Model)

3. Selected Results

4. Conclusion
Integrated Model

Model inputs
- Supply (long term contracts and flexible supply)
- Infrastructure (Pipelines, Storages, LNG Import terminals + additions / expansions)
- Non-power sector gas demand
- Installed Generation Capacities
- Fuel Prices (not natural gas)
- Investment costs for capacity
- Electricity demand
- Renewable energy generation (exogenous)
- CO₂ restrictions

Regional coverage:
EU-27 plus Turkey, Norway, Switzerland

Model outputs
- Infrastructure Utilization
- Physical gas flows
- Short-run marginal gas supply costs
- Gas supply costs & volumes
- Base & Peak Load Prices
- Power Station Dispatch
- Investment decisions (capacity additions & decommissions)
- CO₂ Emissions & Prices
- ...
Scenario Definitions

“Old World“ Scenario:
• substitute-indexed annually fixed gas price
• identical for all gas-fired generation plants in all countries

Integrated Simulation:
• gas supply endogenized
• natural gas prices may differ across countries and within the year (months, type-days)
• annually fixed border prices per supply country (net-back from Old World Scenario; assumed to be substitute indexed)
• i.e. gas supplied at EU borders at „producer prices“, competitive price formation within the EU
Agenda

1. Introduction

2. Methodology (Model)

3. Selected Results

4. Conclusion
Electricity Generation by Fuel

Gas-fired generation in 2020:
- generation increases by more than 150%
- 28% of total generation (from 12% in 2008)

Other fuels:
- decline for hard coal, lignite, nuclear power
- RES share in electricity generation up to 33 percent

➢ e.g. in line with scenarios Capros et al. (2000), EWI/EEFA (2008)
Generation, Capacity, Full load hours by fuel

Table R2: Simulation results EU-27 power market projection

<table>
<thead>
<tr>
<th></th>
<th>Generation [TWh, %]</th>
<th>Installed Capacity [GW]</th>
<th>Full load hours per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Coal</td>
<td>515 (15%)</td>
<td>200 (5%)</td>
<td>107.8</td>
</tr>
<tr>
<td>Lignite</td>
<td>309 (9%)</td>
<td>148 (4%)</td>
<td>50.1</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>414 (12%)</td>
<td>1,142 (28%)</td>
<td>107.1</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>32 (1%)</td>
<td>0 (0%)</td>
<td>38.5</td>
</tr>
<tr>
<td>Nuclear</td>
<td>952 (28%)</td>
<td>804 (20%)</td>
<td>132.5</td>
</tr>
<tr>
<td>Large Hydro</td>
<td>262 (8%)</td>
<td>256 (6%)</td>
<td>127.0</td>
</tr>
<tr>
<td>Wind(^a)</td>
<td>104 (3%)</td>
<td>467 (12%)</td>
<td></td>
</tr>
<tr>
<td>Other RES(^a)</td>
<td>371 (11%)</td>
<td>596 (15%)</td>
<td></td>
</tr>
<tr>
<td>Other(^a,b)</td>
<td>434 (13%)</td>
<td>438 (11%)</td>
<td></td>
</tr>
<tr>
<td>Total(^*)</td>
<td>3,394</td>
<td>4,051</td>
<td></td>
</tr>
<tr>
<td>Non-RES</td>
<td>2,657 (78%)</td>
<td>2,732 (67%)</td>
<td>563.1</td>
</tr>
<tr>
<td>RES</td>
<td>738 (22%)</td>
<td>1,319 (33%)</td>
<td></td>
</tr>
</tbody>
</table>

* Difference compared to consumption (Table 1) due to power consumption by energy storages, losses during transmission and imports / exports with non-model regions (Balkans, non-EU-Eastern Europe)

\(^a\) Exogenous in model simulations based on Bartels (2009) and Nicolosi and Wissen (2009)

\(^b\) Mainly electricity generation by Main Activity Heat (CHP) plants
Electricity and CO₂ Prices

Electricity Prices:
- decline 2008 to 2010 due to fuel price developments
- 2008 value in line with average base prices
- (fuel prices constant as of 2010)
- further increases due to capped emissions

Emission Permits:
- emission permit prices increase from 22 to 53 EUR / tonne of CO₂
Short-term Dispatch Effect on gas-fired generation (I)

Key:
- Weekday
- Saturday
- Sunday

Fixed Gas price (dotted line)

Integrated Simulation (Continuous Line)
Findings:
Small net-effect, but:

<table>
<thead>
<tr>
<th>Natural Gas Price</th>
<th>Electricity Demand</th>
<th>LOW</th>
<th>MEDIUM</th>
<th>HIGH</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>Generation Increases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIGH</td>
<td>Generation Constant (small increase)</td>
<td>Generation Constant</td>
<td>Generation Constant (small decrease)</td>
<td>Generation Constant</td>
</tr>
</tbody>
</table>
Long-run: Implications on investment in technologies

On an aggregate EU-29 level (2020):

- minor effects on gas-fired generation; significant substitution of lignite by hard coal generation

- Consequence of observed short-run effects as CO₂ prices make supply curve flatter in general

- Double fuel switch:
 - natural gas-off peak seasons -> natural gas relatively more competitive than lignite in base load generation
 - natural gas peak seasons -> natural gas loses competitiveness compared to hard coal
Relative Change of natural gas-fired generation per country vs. installed capacity in that country

- e.g. same installed capacity but more generation -> relative move towards off-peak electricity generation from natural gas
- or same installed capacity but fewer generation from gas-fueled power plants -> relative more peak-load generation
Gas-fired generation and capacity 2020 (I)

Effects:

- Eastern European countries in relatively greater geographic proximity to natural gas sources see largest increases in gas-fired generation
- also higher full load hours
- relative declines in countries with limited import capacities for natural gas -> competition for gas with other consumers
Gas-fired generation and capacity 2020 (II)

Effects

- significant generation declines in Spain, France -> relatively high dependence on more costly LNG
 - France, Belgium, Germany -> capacity remains unchanged
 - Spain, UK -> decline in line with generation
1. Introduction

2. Methodology (Model)

3. Selected Results

4. Conclusion
Summary

Short-run:
- More gas-fired generation in gas demand off-peak times (base load generation)
- Less gas-fired generation in selected electricity peak demand times (spring and fall seasons)

Long-run:
- Effects on hard coal (positive) and lignite competitiveness (negative) in peak and off-peak hours
- Gas-fired generation moves towards EU borders (i.e. closer geographic proximity to pipeline gas sources in the east)
DIME Electricity Market Model

Dispatch and Investment Model for Electricity Markets in Europe

Input
- Total demand
- Residual demand
- Exogenous generation
- Political restrictions
- Existing capacities
- Technical properties of technologies
- Economical properties of technologies
- Fuel prices / volumes
- Existing transmission capacities
- Transmission loss

Output
- Commissioning and retirement of capacities by technology
- Installed capacities
- Annual generation structure
- Plant dispatch by load level
- Physical exchange
- Marginal generation costs
- Fixed and variable generation costs
- Fuel consumption
- Carbon emissions
- Carbon prices

Source: EWI
TIGER Natural Gas Market Model

Supply at borders
- volumes & border prices

Gas demand
- by sector, regionalized

Infrastructure
- Capacities (exist. + exp.)

Linear Optimization

Objective:
Cost-minimal demand satisfaction, restricted by available capacities

temporal granularity:
day-types and months

Infrastructure assets *(Pipelines, Gas Storages, LNG Terminals)*
- Volumes, utilization, flows etc.

Locational Marginal Cost Price Estimator