AN INTEGRATED SIMULATION/OPTIMIZATION APPROACH TO THE MODELING AND ANALYSIS OF THE DECENTRALIZED TURKISH ELECTRICITY MARKET

Kemal Sarıca*
Ilhan Or
Gurkan Kumbaroğlu

Industrial Eng. Dept.
Boğaziçi University
Bebek – İstanbul
Turkey
E-mail*: saricake@boun.edu.tr

32nd IAEE International Conference
Overview

- Scope of the Study
- Simulation Framework
- Simulation Actors’ Structure
- System Operator
- Current State
- Suggestions
Scope of the Study

• To simulate the competitive market structure under transmission line capacity and production technology based constraints.
• To investigate market restructuring and deregulation
• To understand the implications of a competitive Turkish power market
Scope of the Study

- Beside the main objective we want it also:
 - To be usable for investment planning in the long run.
 - Capable to identify the most appropriate electricity production technology, size and region based on simulation history.
 - CO2 emissions resulting from power generation can be accounted.
 - Featuring a scenario-based analysis of energy-environment interactions.
Simulation Framework

- An agent based simulation approach is adapted. (Bower and Bunn (2000), Bunn and Oliveira (2001), North et al. 2002; Veselka et al. 2002).
- Transmission system is constructed in the simulation for modeling network constraints between generators and demand points.
- Each agent has its’ own objective and related behavioral algorithm.
Simulation Agents

Self learning & autonomous agents:

- Power User Agents (Power Demand)
- Independent Power Producer Agents (IPP)
- Power Generator Agents
- Power Transmission Operator Agent
- Power Transmitter Agents
- System Operator (SO)
Power User Agents

- These agents form the demand side of the electricity market.
- Try to minimize the cost of electricity needed.
- Each has its’ own daily, seasonal demand pattern and growth trend.
- Currently inelastic demand but ready for elastic demand cases.
- At each time interval power user agents will use the power supplied by suppliers and/or power transmitter agents.
- Lack of supplying electricity to the power user agents will result electricity cuts at that region/consumer.
Independent Power Producer Agents

- These agents are the investors in the market.
- They own the power producer agents.
- Objective is to maximize its profit.
- For this objective it invests in new power producer agents (power producing technologies).
Power Generator Agents

- These are the power plants that are producing the electricity.
- These agents are owned by IPPs,
- They mainly have technological parameters.
- They bid prices to the SO at each time interval.
- Relatively complex structure compared to other agents due to:
 - Technical constraints implemented
 - Self reinforcement learning algorithm.
Power Generator Agents

- Self learning and autonomous agents.
- Based on previous pool prices and possible pricing strategies it tries to determine best strategy to maximize the profit for the next day.
- Strategy formation is for the whole day.
- Pricing strategy is based on critical time strategy where:
 - Critical time is Minimum Shut Down Time if last state is Up or vice versa.
Power Generator Agents

• At the stage of pricing:
 • If the selected pricing under regular circumstances lead to a profitable choice then selected pricing strategy will be selected.
 • Else marginal cost plus a fix profit rate is sent to the SO for bidding purposes.
• Able to realize the advantage of the position at the grid.
• For base power plants (nuclear, large coal etc.) pricing under marginal cost is possible.
Power Transmission Operator Agents

- This agent is the operator of overall interconnection system.
- It is the owner of all transmission lines.
- Natural monopoly.
- It tries to maximize its profit accordingly.
- New transmission line investments based on transmission line loading levels and congestions.
Power Transmitter Agents

• These are the agents that are transmitting the electricity
• Their descriptive parameters are:
 • Voltage
 • Capacity
 • Impedance Values
 • No load cost
 • Operating cost
 • Setup Cost
 • Construction Time
 • Starting - Ending regions
System Operator

- System Operator (SO) is the central planner agent which tries to satisfy the demand of users with minimum cost.
- System operator looks at the following parameters during decision process:
 - bid levels and quantities,
 - generators region;
 - available transmission line capacities,
 - bid levels from power transmitter operator agent,
 - and power user agents demand quantities and region,
System Operator (AC OPF)

- SO solves an AC-OPF to achieve the objective.
 - Currently a linearized version of AC-OPF.
- It generates day ahead schedule of all generators and transmission lines and prices.
- It posts the schedule to generators and their owners.
- Prices at each node is posted by SO.
Grid Structure

- A transmission network system with
 - 30 bus, 41 transmission lines,
 - 9 generators, and 21 power users is adopted from Shahidehpour *et.al.* 2002.
Simulation Setup

Grid Structure

- Network Generator Structure

<table>
<thead>
<tr>
<th>Generators</th>
<th>Capacity (MW)</th>
<th>MinLoad (MW)</th>
<th>NoLoad Energy (MWh)</th>
<th>Startup Energy (MWh)</th>
<th>Minimum Up Time (MWh)</th>
<th>Minimum Down Time (MWh)</th>
<th>Primary Resource</th>
<th>Connected Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator 1</td>
<td>133</td>
<td>0</td>
<td>10</td>
<td>2.058</td>
<td>3</td>
<td>2</td>
<td>Gas</td>
<td>30</td>
</tr>
<tr>
<td>Generator 2</td>
<td>45</td>
<td>0</td>
<td>5</td>
<td>0.882</td>
<td>1</td>
<td>1</td>
<td>Gas</td>
<td>24</td>
</tr>
<tr>
<td>Generator 3</td>
<td>45</td>
<td>0</td>
<td>5</td>
<td>0.882</td>
<td>1</td>
<td>1</td>
<td>Gas</td>
<td>11</td>
</tr>
<tr>
<td>Generator 4</td>
<td>177</td>
<td>0</td>
<td>10</td>
<td>2.94</td>
<td>4</td>
<td>2</td>
<td>Oil</td>
<td>2</td>
</tr>
<tr>
<td>Generator 5</td>
<td>133</td>
<td>0</td>
<td>10</td>
<td>2.352</td>
<td>3</td>
<td>2</td>
<td>Gas</td>
<td>8</td>
</tr>
<tr>
<td>Generator 6</td>
<td>133</td>
<td>0</td>
<td>10</td>
<td>2.352</td>
<td>3</td>
<td>2</td>
<td>Coal</td>
<td>5</td>
</tr>
<tr>
<td>Generator 7</td>
<td>222</td>
<td>0</td>
<td>20</td>
<td>5.88</td>
<td>5</td>
<td>3</td>
<td>Coal</td>
<td>1</td>
</tr>
<tr>
<td>Generator 8</td>
<td>177</td>
<td>0</td>
<td>10</td>
<td>2.793</td>
<td>4</td>
<td>2</td>
<td>Oil</td>
<td>13</td>
</tr>
<tr>
<td>Generator 9</td>
<td>177</td>
<td>0</td>
<td>10</td>
<td>2.793</td>
<td>4</td>
<td>2</td>
<td>Oil</td>
<td>15</td>
</tr>
</tbody>
</table>

- Transmission network capacity fixed at 300MW for test this point forward.
Simulation Setup

Grid Structure

- Network Power User Structure

<table>
<thead>
<tr>
<th>Power users</th>
<th>Max Load (MW)</th>
<th>MinLoad (MW)</th>
<th>Connected Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power user 1</td>
<td>71</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>Power user 2</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Power user 3</td>
<td>221</td>
<td>134</td>
<td>4</td>
</tr>
<tr>
<td>Power user 4</td>
<td>114</td>
<td>69</td>
<td>5</td>
</tr>
<tr>
<td>Power user 5</td>
<td>72</td>
<td>43</td>
<td>7</td>
</tr>
<tr>
<td>Power user 6</td>
<td>100</td>
<td>60</td>
<td>8</td>
</tr>
<tr>
<td>Power user 7</td>
<td>21</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Power user 8</td>
<td>36</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>Power user 9</td>
<td>21</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Power user 10</td>
<td>29</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Power user 11</td>
<td>14</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Power user 12</td>
<td>28</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Power user 13</td>
<td>7</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Power user 14</td>
<td>28</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>Power user 15</td>
<td>7</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Power user 16</td>
<td>57</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td>Power user 17</td>
<td>7</td>
<td>4</td>
<td>23</td>
</tr>
<tr>
<td>Power user 18</td>
<td>28</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Power user 19</td>
<td>14</td>
<td>9</td>
<td>26</td>
</tr>
<tr>
<td>Power user 20</td>
<td>7</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Power user 21</td>
<td>36</td>
<td>22</td>
<td>30</td>
</tr>
</tbody>
</table>
Simulation Setup

Demand

Load Levels for year 2002

32nd IAEE International Conference
Simulation Setup

Demand

Average/MIN/MAX Loads for year 2002 for day times (normalized)

32nd IAEE International Conference
Initial Simulation Results

- 4 different day times are selected.
Behavioral Algorithms
Price Tracking

- Motivation is to generator agents to be able to see their power in the price formation procedure.
- Compare the prices they bid and prices announced by SO.
- Algorithm follows the steps:
 For every day time hour = i
 \[\text{Price Gap (i)} = \text{Price (i)} - \text{Bid Price (i)} \]
 Take average and standard deviation of last 30 simulation time step
 Look \(T \) value of the sample with 29 degree of freedom.
 If \(T \) value is less than or equal to \(T_{0.95,29} \) Then
 \[\text{PriceTrackingEff} = -\text{PriceTrackingEffFact} \times \frac{T}{T_{0.95,29}} + (1 + \text{PriceTrackingEffFact}) \]
 Else
 \[\text{PriceTrackingEff} = 1 \]
 Next day time

32nd IAEE International Conference
Behavioral Algorithms

price tracking

Base Case

Price Tracking with factor of 5%

32nd IAEE International Conference
Behavioral Algorithms
price tracking

32nd IAEE International Conference
Behavioral Algorithms

Market Share

- Focuses on the share of the generator agents on the spot market on daytime basis (hourly).
- One generator with high market share may affect the prices other than its marginal production cost by manipulation.
- Algorithm follows the steps:

 For every day time hour=\(i\)

 \[
 \text{Market Share (i)} = \frac{\text{Load (i)}}{\text{Demand (i)}} - \left(\frac{1}{\text{Number of Generators}}\right)
 \]

 \[
 \text{Expected Market Share (i)} = \text{Expected Market Share (i)} + \alpha \ast \left(\text{Market Share (i)} - \text{Expected Market Share (i)}\right)
 \]

 \[
 \text{Market Share Effect (i)} = \left(\text{Expected Market Share (i)}\right)^3 \ast \left(\text{Market Share Effect Factor+1}\right)
 \]

 Next day time
Behavioral Algorithms
Market Share

Base Case

Market Share with factor 10%

32nd IAEE International Conference
Focuse on demand, physical capacity and generator load triple interaction.

The algorithm may be summarized as follows:

For every day time hour = i

\[
\text{Market Power}[i] = \frac{\text{Generator Load}(i)}{\text{Physical Capacity} - \text{Demand}(i)}
\]

\[
\text{Expected Market Power}(i) = \text{Expected Market Power}(i) + \alpha \times (\text{Market Power}(i) - \text{Expected Market Power}(i))
\]

\[
\text{Market Power Effect}(i) = \max(1, \frac{1}{1.2 - \text{Expected Market Power}(i)})^{1/8}
\]

Next day time
Behavioral Algorithms
Market Power

Base Case

Market Power

32nd IAEE International Conference
Behavioral Algorithms
Market Power

Base Case

Market Power

32nd IAEE International Conference
Conclusions

- The learning algorithms have led more realistic outcomes.
- Algorithms developed has opened up the area for hourly price speculation and manipulation.
 - Market Power for manipulating gap between demand and physical capacity.
 - Market Share algorithm for manipulating prices by the share of production.
 - Price Tracking algorithm for showing the power price clearing producer.
Conclusions

- Market Power is found to be effective for price formations at peak hours.
- Market Share algorithm is found to be effective where the number of producers are less in number.
- Price Tracking algorithm is effective for all day hours where the higher the number of competitive producers, less effect can be sensed.
- Combinations of the algorithms show very reasonable price spikes and collapses due to demand and capacity changes.
Conclusions

- Regarding transmission constraints:
 - Price of transmitting electricity from one point to another has dramatically effect on price formation.
 - Both average prices and variation of prices increases with transmission line fee.
 - Keeping same transmission line fees with decreasing transmission capacities lead to lower prices and variations compared to price changes.
 - Transmission line fees may be used to encourage distributed electricity production???
Conclusions and further study

- Next step is to develop an algorithm for capacity with holding cases.
- Also nonlinear optimization and introduction of renewables will also be established.
- Based on the 30 bus network, policy analysis and design will studied in detail.
- Based on this policy study suggestions for Turkey electricity market will be developed and applied with real data.