Student Poster

Exploring the Modeling Implications of Alternative Learning-By-Doing Specifications

Marie Tamba
PhD Candidate
University of Strathclyde
Department of Economics
Sir William Duncan Building
130 Rottenrow street
G4 0GE, Glasgow
Ph: 00447557415761
marie.tamba@strath.ac.uk
Exploring the Modeling Implications of Alternative Learning-By-Doing Specifications
An Application to Renewable Energy in Scotland

Marie Tamba, PhD Candidate, Department of Economics, University of Strathclyde

1. Introduction

Background
Scottish Government’s Ambitious Targets
• 80% GHG emission reductions by 2050
• 42% Interim target reduction by 2020
As means to an end: renewable energy sources must generate the equivalent of:
100% of Scotland’s gross annual electricity consumption by 2020

Rationale
2 major policy goals to reach these targets at the lowest cost
• Renewable Energy Technologies deployment support (Renewable Obligation Certificates)
• Innovation must play a role
To reduce the costs of renewables
Policy and technological change influence each other in complex ways

Objective
Observing these interactions in a model for Scotland
• Modeling technological change
• Modeling policy support to renewables
• Do it simultaneously
Modeling Learning-by-Doing and subsidies to marine energy in a CGE model

2. Learning-By-Doing In the Literature
• The process by which unit costs decrease with cumulative experience (Wright, 1936) $C = C_0(G)^{-\alpha}$
• Numerous but wide-ranging estimates of learning rates for energy technologies (Kahouli-Brahmi, 2008)
• Popular method to incorporate endogenous technological change in Energy Economy Environment Models
• Major differences in specifications arise from a literature review of estimation and EEE modeling articles
 • Difference in experience proxy (traditional learning curve or endogenous growth)
 • Difference in equation form (traditional learning curve or endogenous growth)
 • Differences in parameter values (constant, increasing or decreasing returns to knowledge)

These specifications are likely to produce very different results in the modeling exercise

3. Simulations in a CGE Model of Scotland
• Energy-disaggregated Computable General Equilibrium model for Scotland
• Production subsidy to the marine electricity generation sector
• Introducing endogenous Hicks-neutral technological change as improvements in Total Factor Productivity in the CES production function
• 8 simulations with the same shock on the marine electricity sector but each with a different learning-by-doing specification, identified in the literature

The objective is to compare the impact of each specification on the modeling results and adjustment behaviors

4. Results
• The production subsidy has a positive impact on the Scottish Economy (GDP, Export, Employment)
• The positive shock to marine energy displaces generation from traditional sources (Gas, hydropower), but other sectors benefit from the economic expansion (fossil-fuel extraction, wind)
• Introducing Learning-by-Doing strengthens the economic expansion through efficiency gains in marine electricity production
• The specification of LBD matters greatly for the results
 • The endogenous growth specification leads to larger efficiency gains than traditional LBD
 • Using cumulative output as a proxy for experience results in S-shaped marine output adjustments and slightly larger positive impact than using cumulative investments
 • Diminishing returns to knowledge in the endogenous growth specification generates results closer to the traditional learning curve, while positive returns destabilise the model.

5. Conclusion
• Endogenous technological change is a crucial feature of Energy-Economy-Environment models for policy analysis.
• Learning-by-Doing and policy support interact in a complex system. Learning-by-doing is dependent on technology deployment, which in turn depends on the costs of the technology.
• The choice of learning-by-doing specification affects modeling results. Modelers must choose the best available option for their model type, state their assumptions and provide a sensitivity analysis to these assumptions.
• Technological Change is a complex system and more research is needed to identify the roles of learning-by-doing and R&D activities in technological development at different phases of maturity

This research is conducted as part of my PhD degree, under the supervision of Professor McEwan and Professores Skates, University of Strathclyde, Glasgow, Scotland.

References: