Relation between wind and electricity prices in a deregulated market: the case of Ireland

Valeria Di Cosmo and Laura Malaguzzi Valeri

Economic and Social Research Institute, Ireland

Austin, USAEE

November 7, 2012
Interaction between greater renewable generation and electricity prices

- Growing importance of renewables
- How does this affect consumers in the short run? (effect on prices)
- Look at actual (historic) results
Why Ireland?

- Main characteristics of Irish Single Electricity Market:
 - Compulsory market with capacity payments
 - System-wide data, publicly available on (half)hourly basis
Why Ireland?

- Main characteristics of Irish Single Electricity Market:
 - Compulsory market with capacity payments
 - System-wide data, publicly available on (half)hourly basis
Why Ireland?

- Main characteristics of Irish Single Electricity Market:
 - Compulsory market with capacity payments
 - System-wide data, publicly available on (half)hourly basis
 - Limited interconnection with other systems (i.e. GB)
 - Easier to identify effect of wind
Why Ireland?

- Main characteristics of Irish Single Electricity Market:
 - Compulsory market with capacity payments
 - System-wide data, publicly available on (half)hourly basis
 - Limited interconnection with other systems (i.e. GB)
 - Easier to identify effect of wind
 - Wind has grown from 900MW to 2000MW between 2008 and 2011 (8.1% to 16.6% of demand)
Why Ireland?

- Main characteristics of Irish Single Electricity Market:
 - Compulsory market with capacity payments
 - System-wide data, publicly available on (half)hourly basis
 - Limited interconnection with other systems (i.e. GB)
 - Easier to identify effect of wind
 - Wind has grown from 900MW to 2000MW between 2008 and 2011 (8.1% to 16.6% of demand)
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
- Day ahead: generators bid, System Operator defines merit order and dispatches accordingly
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
- Day ahead: generators bid, System Operator defines merit order and dispatches accordingly
 - Same day: adjustment for transmission congestion/system reliability
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
- Day ahead: generators bid, System Operator defines merit order and dispatches accordingly
- Same day: adjustment for transmission congestion/system reliability
 - Generators receive System Marginal Price (SMP = Shadow Price + Uplift)
 - Shadow Price: bid of marginal plant (MC)
 - Uplift: cost of turning on if plant would otherwise make losses
The Irish electricity market: SEM

- Centrally dispatched pool market with capacity payments and uniform price
- Explicit bidding code of conduct and Market Monitoring Unit
 - Generators bid SRMC
 - No strategic behavior in the spot market
- Day ahead: generators bid, System Operator defines merit order and dispatches accordingly
- Same day: adjustment for transmission congestion/system reliability
- Generators receive System Marginal Price (SMP = Shadow Price + Uplift)
 - Shadow Price: bid of marginal plant (MC)
 - Uplift: cost of turning on if plant would otherwise make losses
Data

1. Most of the data come from SEM-o, the Single Electricity Market operator
2. Half-hourly data from 2008 to 2011 on
 - System Demand

Data
Data

1. Most of the data come from SEM-o, the Single Electricity Market operator
2. Half-hourly data from 2008 to 2011 on
 - System Demand
 - Prices
 - Shadow Price
 - Uplift
Data

1. Most of the data come from SEM-o, the Single Electricity Market operator

2. Half-hourly data from 2008 to 2011 on
 - System Demand
 - Prices
 - Shadow Price
 - Uplift
 - Wind generated
 - Plant availability
Data

1. Most of the data come from SEM-o, the Single Electricity Market operator
2. Half-hourly data from 2008 to 2011 on
 - System Demand
 - Prices
 - Shadow Price
 - Uplift
 - Wind generated
 - Plant availability
3. Daily fuel prices (Bloomberg)
Data

1. Most of the data come from SEM-o, the Single Electricity Market operator
2. Half-hourly data from 2008 to 2011 on
 - System Demand
 - Prices
 - Shadow Price
 - Uplift
 - Wind generated
 - Plant availability
3. Daily fuel prices (Bloomberg)
Shadow Price and fuels

Figure: Relation between shadow price and generation fuels, €/MWh
Summary Statistics 2009-2011

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShadowPrice ($€/MWh)</td>
<td>28008</td>
<td>44.03278</td>
<td>18.16093</td>
<td>-38.005</td>
<td>420.27</td>
</tr>
<tr>
<td>Uplift ($€/MWh)</td>
<td>28008</td>
<td>10.48905</td>
<td>20.87961</td>
<td>0</td>
<td>463.38</td>
</tr>
<tr>
<td>Demand (MWh)</td>
<td>28008</td>
<td>3889.748</td>
<td>866.1791</td>
<td>1885.648</td>
<td>6822.299</td>
</tr>
<tr>
<td>Wind Gen. (MWh)</td>
<td>28008</td>
<td>452.9715</td>
<td>376.9227</td>
<td>2.023</td>
<td>1833.216</td>
</tr>
<tr>
<td>NatGas price ($€/MWh)</td>
<td>28008</td>
<td>31.64587</td>
<td>10.24269</td>
<td>8.255291</td>
<td>56.04227</td>
</tr>
<tr>
<td>Gen. margin (MWh)</td>
<td>28008</td>
<td>3566.834</td>
<td>951.6467</td>
<td>171.7642</td>
<td>6783.894</td>
</tr>
</tbody>
</table>

Correlation Shadow Price vs Wind = -0.06
Summary Statistics 2009-2011

<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>ShadowPrice (€/MWh)</td>
<td>28008</td>
<td>44.03278</td>
<td>18.16093</td>
<td>-38.005</td>
<td>420.27</td>
</tr>
<tr>
<td>Uplift (€/MWh)</td>
<td>28008</td>
<td>10.48905</td>
<td>20.87961</td>
<td>0</td>
<td>463.38</td>
</tr>
<tr>
<td>Demand (MWh)</td>
<td>28008</td>
<td>3889.748</td>
<td>866.1791</td>
<td>1885.648</td>
<td>6822.299</td>
</tr>
<tr>
<td>Wind Gen. (MWh)</td>
<td>28008</td>
<td>452.9715</td>
<td>376.9227</td>
<td>2.023</td>
<td>1833.216</td>
</tr>
<tr>
<td>NatGas price (€/MWh)</td>
<td>28008</td>
<td>31.64587</td>
<td>10.24269</td>
<td>8.255291</td>
<td>56.04227</td>
</tr>
<tr>
<td>Gen. margin (MWh)</td>
<td>28008</td>
<td>3566.834</td>
<td>951.6467</td>
<td>171.7642</td>
<td>6783.894</td>
</tr>
</tbody>
</table>

Correlation Shadow Price vs Wind = -0.06
Shadow Price: Model choice

- Time Series analysis?
 - No
Shadow Price: Model choice

- Time Series analysis?
- No
 - Generators bid once in the day-ahead
 - Bids valid for all periods in day
Shadow Price: Model choice

- Time Series analysis?
- No
 - Generators bid once in the day-ahead
 - Bids valid for all periods in day
 - Huisman, Huurman, and Mahieu (Energy Economics 2007), Weron (Energy Economics, 2008) suggest considering daily electricity prices as a series of 24 separate contracts
Shadow Price: Model choice

- Time Series analysis?
- No
 - Generators bid once in the day-ahead
 - Bids valid for all periods in day
 - Huisman, Huurman, and Mahieu (Energy Economics 2007), Weron (Energy Economics, 2008) suggest considering daily electricity prices as a series of 24 separate contracts

- However, there is correlation between hours
Shadow Price: Model choice

- Time Series analysis?
- No
 - Generators bid once in the day-ahead
 - Bids valid for all periods in day
 - Huisman, Huurman, and Mahieu (Energy Economics 2007), Weron (Energy Economics, 2008) suggest considering daily electricity prices as a series of 24 separate contracts
- However, there is correlation between hours
Shadow Price: Model choice

Aggregate data to hourly level

Estimate simultaneous system of equations

- residuals correlated across groups (hours of day)
- correction for autocorrelation within groups (AR1)
Shadow Price: Model choice

Aggregate data to hourly level

Estimate simultaneous system of equations
 ▶ residuals correlated across groups (hours of day)
 ▶ correction for autocorrelation within groups (AR1)

System of equations with \(i = 1, \ldots, n, \ldots, 24 \) (number of hours)
Shadow Price: Model choice

Aggregate data to hourly level

Estimate simultaneous system of equations
 - residuals correlated across groups (hours of day)
 - correction for autocorrelation within groups (AR1)

System of equations with $i = 1, \ldots, n, \ldots, 24$ (number of hours)
Shadow Price: model

System of equations with $i = 1,...n,...24$ (number of hours)

$$P_{i,d} = \alpha_i + \sum_h \beta^h_i L^h_{i,d} + \gamma_i W_{i,d} + \sum_j \zeta^j_i F^j_{i,d-1} + \mu_i CO_{d-1} + \theta_i mar_{i,d} + \sum \kappa^s_i D^s_i + \epsilon_{i,d}$$ \hspace{1cm} (1)

where

P = shadow price
L = demand
W = wind
F = fuel prices
CO = CO2 permit prices
mar = generation margin
D = dummy variables (months, day of week)
Shadow Price: Results (select)

<table>
<thead>
<tr>
<th>Hour</th>
<th>Loads</th>
<th>Wind</th>
<th>Gas_{d-1}</th>
<th>GenMargin</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.004***</td>
<td>0</td>
<td>0.616***</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.037)</td>
<td>(0)</td>
</tr>
<tr>
<td>4</td>
<td>0.003**</td>
<td>-0.003***</td>
<td>0.578***</td>
<td>-0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.03)</td>
<td>(0)</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>-0.006***</td>
<td>0.534***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.037)</td>
<td>(0)</td>
</tr>
<tr>
<td>16</td>
<td>0.004***</td>
<td>-0.002*</td>
<td>0.414***</td>
<td>-0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.069)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>17</td>
<td>0.004***</td>
<td>-0.002***</td>
<td>0.444***</td>
<td>-0.005***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.069)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>18</td>
<td>0.006***</td>
<td>-0.003*</td>
<td>0.516***</td>
<td>-0.004***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.089)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>19</td>
<td>0.010*</td>
<td>-0.008**</td>
<td>0.843***</td>
<td>-0.010***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.003)</td>
<td>(0.202)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>20</td>
<td>0.012**</td>
<td>-0.003</td>
<td>0.580***</td>
<td>-0.011***</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.002)</td>
<td>(0.158)</td>
<td>(0.002)</td>
</tr>
</tbody>
</table>
Average effect of wind

Wind coefficient, averaged across 24 hours, weighted by demand:

-0.002

Translated into percentages:
if wind generation increases by 10% → shadow price decreases by 0.2%
Average effect of wind

Wind coefficient, averaged across 24 hours, weighted by demand:

-0.002

Translated into percentages:
if wind generation increases by 10% → shadow price decreases by 0.2%

Wind generation has strongest (negative) effect on shadow price:

- at night, when statistically blows more
- at peak hours, when avoids peak plants from entering merit order
Average effect of wind

Wind coefficient, averaged across 24 hours, weighted by demand:
-0.002

Translated into percentages:
if wind generation increases by 10% → shadow price decreases by 0.2%

Wind generation has strongest (negative) effect on shadow price:
- at night, when statistically blows more
- at peak hours, when avoids peak plants from entering merit order
Relation between wind and electricity prices in a deregulated market: the case of Ireland

Uplift

Uplift
Uplift: Model choice

1. No evidence of time series behavior:

2. Evidence of correlation between different hours, but no common behaviour: panel approach (as for shadow price analysis)
Results

1. Wind never significant (for any hour of the day)
2. Strongest effect is fuel price
3. Different robustness checks
 - Uplift in levels regressed on wind, demand and availability changes: wind changes do not affect the uplift level
Results

1. Wind never significant (for any hour of the day)
2. Strongest effect is fuel price
3. Different robustness checks
 ▶ Uplift in levels regressed on wind, demand and availability changes: wind changes do not affect the uplift level
Conclusions

Studied Single Electricity Market of Ireland:

▶ Little interconnection with other systems (at least up to 2012)
▶ Compulsory pool system (comprehensive data)
▶ Generators have to bid marginal cost
▶ Doubling of wind installed in 4 years analysed

Findings:

▶ Small but positive effect of wind generation on Shadow Price
▶ Effect tends to be larger at night and at peak periods
▶ No measurable effect of wind on uplift
▶ Wind has a negative effect on SMP
Conclusions

Studied Single Electricity Market of Ireland:

▶ Little interconnection with other systems (at least up to 2012)
▶ Compulsory pool system (comprehensive data)
▶ Generators have to bid marginal cost
▶ Doubling of wind installed in 4 years analysed

Findings:

▶ Small but positive effect of wind generation on Shadow Price
▶ Effect tends to be larger at night and at peak periods
▶ No measurable effect of wind on uplift
▶ Wind has a negative effect on SMP
Conclusions

Studied Single Electricity Market of Ireland:

▶ Little interconnection with other systems (at least up to 2012)
▶ Compulsory pool system (comprehensive data)
▶ Generators have to bid marginal cost
▶ Doubling of wind installed in 4 years analysed

Findings:

▶ Small but positive effect of wind generation on Shadow Price
▶ Effect tends to be larger at night and at peak periods
▶ No measurable effect of wind on uplift
▶ Wind has a negative effect on SMP
Future Work

Future work: analyse effect of wind on constraint payments to generators.

- Does more wind make electricity more costly to final consumers?