The Impact of the European Regulatory Reforms on the Electricity-related Patent Activities

Dénes Kucsera and Stephan Schmitt

Vienna University of Business and Economics
Institute for Regulatory Economics
06.11.2012, Austin
1 Introduction & Motivation
 • Introduction
 • Motivation

2 Research hypotheses
 • Privatization
 • Liberalization
 • Unbundling
 • Regulatory regime

3 Model & Data
 • Empirical model
 • Data

4 Results
 • Preliminary findings
 • Summary and conclusion
Energy-related innovations: one of the key drivers of the economic growth (Schmookler, 1966)

Schumpeter (1942): best encouragement through monopolies
 - Correlation of size and innovation expenditures → scale factor

Aghion and Howitt (1992): competition
 - Only the most effective firms survive
The motivation for R&D investment has been radically changed

- Before deregulation: cost-based regulation \rightarrow no risk
- After deregulation: firms no longer welfare maximizers \rightarrow projects directly linked to business

Sterlacchini (2010): reforms associated with R&D reduction

- Significant reductions at the very early stages of restructuring
- Dooley (1998): “the fear of finding themselves in a deregulated market and unprepared for competition is causing utilities to act in substantially the same way as if they were deregulated”

Patent activity: increase in post liberalization years followed by significant drop recently (Jamasb and Pollitt, 2011)
Little attention to the innovative investment behavior of the regulated energy firms after the reforms

- Jamasb and Pollitt (2008): literature is short of empirical investigations → inefficient regulatory policies

Our paper:
- Examines the empirical effects of el. reforms on innovation
- Separation of electricity generation and network
Privatization

- State owned firm’s poor performance and budgetary pressures → entrance of private investors for efficiency improvement
- R&D efficiency of state owned firms vs. privatized firms
- Munari (2003): negative influence of privatization on spending, but positive on patent relevance and research productivity
- Jamasb and Pollitt (2009): increased patenting activities in the post-privatization years followed by the recent sharp drop
- *Expectation:*
 - *Generation sector*: (+)
 - *Electricity network*: (-)
Liberalization

- **Goal:** production efficiency and price reduction
 - Implementation: TPA, wholesale market, opening retail market
- **Effects of liberalization on R&D**
 - Incidental loss from innovation \rightarrow liquidation of smaller utilities
 - Free-riding \rightarrow difficult legal protection of innovation
- Munari et al. (2002): focus of producers on long-term projects
 - Not in line with the empirical findings: short-term goals
- Dooley (1998): increased power grid R&D \rightarrow gov. subsidies
- **Expectation:**
 - *Generation sector:* (-)
 - *Electricity network:* (+)
Ownership unbundling

- Vertically integrated firm: discrimination of other utilities
- Advantages: strengthens the competition
- Disadvantages:
 - Information asymmetry: investments spillovers between sectors
 - Investment coordination loss: simultaneous investment
- *Expectation: (-) in both sectors*
Regulatory regime

- **Cost-based regulation**
 - Risk-free environment: reflection in higher tariffs
 - No direct incentives to innovate: lower tariffs

- **Incentive-based regulation**
 - Direct incentives to innovate
 - Incentives to reduce R&D spendings

- **Empirical findings**
 - Incentive reg.: insufficient reward for the firms
 - Bauknecht (2011): more efficient innovation and patents

- *Expectation*: (+)
Empirical model for patent activity

- Patents usually modeled as count data
 - OLS yields biased, inefficient, and inconsistent estimates
 - Poisson model based on Johnston et al. (2010) is used

\[
(Patents_{i,t}) = \beta_1(R&D_{i,t}) + \beta_2(Macro_{i,t}) + \beta_3(Industry_{i,t}) + \beta_4(Policy_{i,t}) + \alpha_i + \epsilon_{i,t}
\]

- \(R&D \) - R&D expenditures
- \(Macro \) - Macroeconomic factors
- \(Industry \) - Industry factors
- \(Policy \) - Policy variables

- Model estimation: Fixed effects panel estimation
 - Equidispersion \(\Rightarrow \) comparison with negative binomial model
Our dataset

Unbalanced panel of 13 European countries over 1985-2008

- R&D expenditure and patent activity
 - Expenditures: cover most of the European innovation
 - Patents: number of patent applications at the EPO, categorized based on international patent classification

- Privatization:
 - Degree of private ownership → (0 - public, 4 - private).

- Liberalization (entry regulation):
 - Liberalized wholesale market variable: existence of wholesale market (0 - non-existence, 1 - existence)
 - Minimum consumption threshold: min. amount of yearly consumption level of supplier change
 - Third party access: 0 - no TPA, 1 - negotiated TPA and 2 - regulated TPA
Ownership unbundling: degree of vertical separation
 - Dummy variable: 0 - no OU, 1 - OU
Aggregated regulatory variable: weighted average of all policy variables
Incentive regulation:
 - Dummy variable: 0 - cost based, 1 - incentive based regulation
Control variables:
 - Real GDP
 - Electricity output
Basic results

<table>
<thead>
<tr>
<th></th>
<th>Generation</th>
<th></th>
<th>Electricity network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Poisson</td>
<td>Neg. Bin.</td>
<td>Poisson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neg. Bin.</td>
</tr>
<tr>
<td>ln_patents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_rd</td>
<td>0.0459</td>
<td>0.0140</td>
<td>-0.0040</td>
</tr>
<tr>
<td>ln_rd_{t-1}</td>
<td>-0.0227</td>
<td>0.0004</td>
<td>0.0212</td>
</tr>
<tr>
<td>growth_output_{t-1}</td>
<td>0.2733</td>
<td>0.1778</td>
<td>1.7188**</td>
</tr>
<tr>
<td>growth_output_{t-2}</td>
<td>0.1114</td>
<td>0.0193</td>
<td>0.8276</td>
</tr>
<tr>
<td>ln_gdp_{t-1}</td>
<td>-0.0806</td>
<td>-0.0010</td>
<td>-0.0369</td>
</tr>
<tr>
<td>ln_gdp_{t-2}</td>
<td>0.5068**</td>
<td>0.6226*</td>
<td>0.9241***</td>
</tr>
<tr>
<td>reg_pot_{t-1}</td>
<td>0.0489*</td>
<td>0.0107</td>
<td>0.0381</td>
</tr>
<tr>
<td>reg_pot_{t-2}</td>
<td>0.0214</td>
<td>0.0386</td>
<td>-0.0340</td>
</tr>
<tr>
<td>reg_entry_{t-1}</td>
<td>0.0331**</td>
<td>0.0401**</td>
<td>0.0767***</td>
</tr>
<tr>
<td>reg_entry_{t-2}</td>
<td>-0.0054</td>
<td>-0.0104</td>
<td>-0.0311</td>
</tr>
<tr>
<td>reg_out_{t-1}</td>
<td>0.0352</td>
<td>0.0331</td>
<td>0.1415</td>
</tr>
<tr>
<td>reg_out_{t-2}</td>
<td>-0.1032</td>
<td>-0.1344</td>
<td>-0.3556***</td>
</tr>
<tr>
<td>reg_ir_{t-1}</td>
<td>-</td>
<td>-</td>
<td>0.0521</td>
</tr>
<tr>
<td>reg_ir_{t-2}</td>
<td>-</td>
<td>-</td>
<td>0.2490**</td>
</tr>
<tr>
<td>N</td>
<td>284</td>
<td>284</td>
<td>176</td>
</tr>
</tbody>
</table>

Robust standard errors, *p < 0.10, **p < 0.05, ***p < 0.01
Reform effects

<table>
<thead>
<tr>
<th></th>
<th>Generation</th>
<th>Electricity network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privatization</td>
<td>0.0493*</td>
<td>-0.0012</td>
</tr>
<tr>
<td>Entry regulation</td>
<td>0.0297**</td>
<td>0.0349*</td>
</tr>
<tr>
<td>Ownership unbundling</td>
<td>-0.1012</td>
<td>-0.2199**</td>
</tr>
<tr>
<td>Incentive regulation</td>
<td>-</td>
<td>0.2839***</td>
</tr>
<tr>
<td>Electricity reform</td>
<td>-</td>
<td>-0.0615**</td>
</tr>
</tbody>
</table>

Robust standard errors, *p < 0.10, **p < 0.05, ***p < 0.01

D. Kucsera and S. Schmitt
The impacts of EU reforms on electricity innovation
Conclusion

Motivation:
- Missing empirical investigation of the impact of electricity reform on innovation
- Focus on the generation and transmission sector

Results:
- Privatization: (+) efficiency increase
- Liberalization: (+) short-term projects
- Ownership unbundling: (-) information asymmetry
- Incentive regulation: (+) efficiency increase
- Electricity reforms: (+)