Electricity Market Restructuring, Grid Reliability, and Nuclear Power Plant Safety in the United States

Chen-Hao Tsai
Ph.D. Candidate in Energy Management and Policy
Department of Energy and Mineral Engineering
The Pennsylvania State University

IAEE New York City International Conference
June 17, 2014
Nuclear Plant Electrical Power System
What happened in Fukushima
Electric Power from Transmission Grid

- **Preferred** source of electric power to nuclear power plant
- **Grid Reliability** from the viewpoint of nuclear plants
 - Un-interrupted electric power supply
 - Stable voltage and frequency, controlled in a narrow range

- **So, when something wrong occurred over the transmission grid...**
Reactor Trip (Emergency Shutdown)
Consequential Loss of Offsite Power
Direct Loss of Offsite Power
Safety Implication

- Reactor Trip
 - Plant in “upset” condition
- Loss of Offsite Power (LOOP)
 - Precursor to Station Blackout, a significant contributor to reactor core damage

- Reduce the frequency of reactor trip / LOOP
U.S. Electricity Market Restructuring

• Traditional Vertically Integrated Market

• Electricity Market Restructuring

Source: National Energy Education Development Project (Public Domain)
Possible Effects on Grid Reliability

- may increase power flow disturbance
 - Power transmitted over longer distance with unprecedented volume
- may increase human errors
 - Additional interface
 - Outsourcing / downsizing
- may increase transmission equipment malfunctions or failures
 - Reduced maintenance
Research Question

Does the frequency of reactor trips/LOOPs increase in competitive markets

Grid Reliability
Nuclear Plant Safety
Data

- Licensee Events Report
 - 1990 to 2011
 - Reactor trips/LOOPs due to disturbance/faults over transmission grid
 - Causes of transmission grid faults
 - Season
Empirical Strategy

- Multi-failure duration analysis with time-varying regressors
 - Events are sparsely distributed
- Empirical Specification
 - Cox Proportional Regression
 - \(h_i(t) = h_{0,i}(t) \exp(X_{i,t}\beta + \varepsilon_{i,t}) \)
 - \(X_{i,t}\beta = \beta_1 \text{Market}_{i,t} + \beta_2 \text{Transition}_{i,t} + \beta_3 \text{GridStress}_{i,t} + \beta_4 \text{Upgrade}_{i,t} + \beta_5 \text{Characteristic}_{i,t} + \gamma Year_t \)
Empirical Results – by event causes

<table>
<thead>
<tr>
<th>[Market]</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor Trips caused by power flow disturbance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grid Stress</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reactor Upgrade</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reactor Characteristics</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Empirical Results – by season

<table>
<thead>
<tr>
<th>[Market]</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Events occurred during summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Market]</td>
<td>3.335** (1.557)</td>
<td>6.308*** (3.014)</td>
<td>5.932*** (2.906)</td>
<td>5.778*** (2.838)</td>
</tr>
<tr>
<td>Transition</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grid Stress</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reactor Upgrade</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Reactor Characteristics</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Results and Policy Implications

• Reactors in competitive markets are more likely to trip due to power flow disturbance over transmission grid, particularly during summer months (May to September)

• Implications
 • Grid reliability at transmission level
 • Operation safety of current nuclear plants
Thank you for your attention