Regulatory Reform and Network Expansion:
Case of the Japanese Natural Gas Industry

Masahiro ISHII (Sophia University)
Satoru HASHIMOTO (Teikyo University)
Koichiro TEZUKA (Nihon University)

33rd USAEE/IAEE NORTH AMERICAN CONFERENCE
October 28, 2015
Contents

1 Introduction
2 Model
3 Gas Price and Network Size
4 Conclusion and Future Research
1 Introduction

1.1 Background

- Regarding the network infrastructure industries such as gas, electricity, railway, road etc.,

 How to invest, construct and expand the network

 is one of the important issues.

- As for the natural gas industry, in US and EU such as the UK, France, Germany, and Italy,

 After the construction of the pipeline networks, deregulation schemes were enforced.
cont.

- In contrast, some countries such as East European countries and Japan have not completed natural gas pipeline networks throughout the countries.

Now, these countries have to execute deregulation. At the same time, these countries have to continue to extend the pipeline network infrastructure.
• With respect to Japanese gas industry,

At the end of 2012, the trunk pipeline (high pressure pipeline) was approximately 3000 km in length, which is quite smaller than that in the US and EU.

• For example,

* The distance between Tokyo and Osaka is about 400 km.

No trunk pipeline exists between them.

* The distance between Berlin and Paris is about 880 km.

There exits a trunk pipeline connecting these cities.
Despite this situation, Japanese government decided to enforce the unbundling regulation that spins off an incumbent into a pipeline network company and a supplier, and it will be introduced in 2017.

However, the government has not considered the importance of pipeline network construction.
1.2 Research Question

- We examine how a network company commits to construct the pipeline network under the regulatory reform.

In other words, we see the effects of the policies, which are related with vertical structure (integration/separation), on the pipeline network expansions.

- To address this problem, we construct a structural model to analyze a relation between vertical structure and network expansion, and obtain some results from the model.
2 Model

- Natural gas is supplied to consumers through a network, which is owned by only one firm.

- Two stage game with 1st stage and 2nd stage

 1st stage
 A network size is determined.

 2nd stage
 A natural gas price is settled between suppliers and consumers.
Outlook

<table>
<thead>
<tr>
<th>Vertical Structure</th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>Monopoly</td>
<td>network size</td>
</tr>
<tr>
<td>Separation</td>
<td>Basic Model</td>
<td>network size</td>
</tr>
<tr>
<td></td>
<td>Access Charge Regulation</td>
<td>access charge</td>
</tr>
<tr>
<td></td>
<td>Two-part Tariff</td>
<td>{ network size, fixed fee, access charge }</td>
</tr>
</tbody>
</table>
Distribution of the consumers (consumption)

* N and λ are positive constants.

\[f(t) = N\lambda e^{-\lambda t} \quad \text{for } t > 0. \quad (1) \]

* f expresses a distribution of the consumers (consumption) on $(0,\infty)$.

* When the natural gas price is equal to 0,
 \[\Rightarrow \text{The density of consumption at a point } t \text{ is } f(t), \]
 \[\Rightarrow \text{The network can be extended over } (0,\infty) \]
 \[\Rightarrow \text{The total consumption is } N. \]

* The consumption is a decreasing function with respect to the distance from the origin.

* The parameter λ determines the decreasing degree.
cont.

- Inverse demand function
 * a is a positive constant.

\[g(t, x) = a - \frac{ae^{\lambda t}}{N\lambda} x \quad \text{for } t > 0, \ 0 \leq x \leq N\lambda e^{-\lambda t}. \]

(2)

where the variable x denotes demand.

* $g(t, x)$ is an inverse demand function at point t.

* The maximum willingness to pay is assumed to be constant, i.e. a, over the interval $(0, \infty)$.
cont.

- Initial network size
 - A non-negative constant u_0 is an initial network size, that is, $(0, u_0]$ is the network at the beginning of the 1st stage.
 - When the network is not extended at all at the 1st stage,
 \Rightarrow Natural gas is supplied to only the consumers in $(0, u_0]$ at the 2nd stage.
Network expansion cost $K_j (j = 1, 2)$

* We assume that a twice continuously differentiable function $K_j : [0, \infty) \rightarrow [0, \infty)$ satisfies

\[
K_j(0) = 0, \quad \frac{dK_j}{du}(u) > 0, \quad \frac{d^2K_j}{du^2}(u) \geq 0.
\]

Hereafter, $K'_j(u) = \frac{dK_j}{du}(u)$.

* When the network is extended from u_0 to $u_0 + u$, $K_j(u)$ is required for the network increment u.

* K_j depends on:

 ◇ Direct cost for the network expansion
 (construction materials, labor and so on)
 ◇ Financing cost
Marginal cost

* The marginal cost to supply natural gas (unit operating cost) at the 2nd stage is denoted by a positive constant c.

* The marginal cost is assumed to depend neither the network size nor the supply, which is constant.
Comparison from the view of gas price and network size

(i) Vertical integration (monopoly)
 * Firm B_1 extends the network, monopolistically supply the gas to the consumers.

(ii) Vertical separation
 (one transmission operator and competitive suppliers)
 * Firm B_{21} is the transmission network operator, and can extend the network.
 * Firm B_{22} and firm B_{23} have to pay firm B_{21} access charges to supply gas.
3 Gas Price and Network Size

3.1 Vertical integration (monopoly)

<table>
<thead>
<tr>
<th>Vertical Structure</th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>network size</td>
<td>price</td>
</tr>
<tr>
<td>Monopoly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Model</td>
<td>{ network size, access charge }</td>
<td>Bertrand competition</td>
</tr>
<tr>
<td>Access Charge</td>
<td>network size</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Regulation</td>
<td></td>
<td>competition</td>
</tr>
<tr>
<td>Two-part Tariff</td>
<td>{ network size, fixed fee, access charge }</td>
<td>Bertrand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>competition</td>
</tr>
</tbody>
</table>
Firm B_1 has the network and decides the size.

Only firm B_1 supplies gas through the network.

The network expansion cost is K_1.

Firm B_1 selects a gas price and a size of the network to maximize its profit.
Total Demand over the Network

- $u \geq 0$

- When firm B_1 selects a gas price $y \in [c, a]$, the demand at a point $t \in (0, u_0 + u]$ is

$$x = \frac{(a - y)N\lambda e^{-\lambda t}}{a}.$$

Then, the total demand over the network $(0, u_0 + u]$ is

$$\int_{0}^{u_0+u} \frac{(a - y)N\lambda e^{-\lambda t}}{a} \, dt = \frac{(a - y)N}{a} \left(1 - e^{-\lambda(u_0+u)}\right)$$

(3)
Profit of Firm B_1

- Let the gas price be $y \in [c, a]$.

 Since the total demand is (3), and the marginal cost (unit operating cost) is c,

 the profit of firm B_1 is given by

 $h_1(u, y) = (y - c) \frac{(a - y)N}{a} \left(1 - e^{-(u_0+u)} \right) - K_1(u)$. (4)

- Firm B_1 chooses a (u, y) which maximizes $h_1(u, y)$.
Theorem 3.1
For the monopoly firm B₁, the pair of network size and gas price \((u, y)\) maximizing the profit \(h_1(u, y)\) is

\[
(u, y) = \begin{cases}
\left(0, \frac{a + c}{2}\right) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} < K'_1(0) \\
\left(u_1^*, \frac{a + c}{2}\right) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} \geq K'_1(0)
\end{cases}
\]

(5)

where \(u_1^*\) is a unique solution of the following equation:

\[
\frac{\partial h_1}{\partial u} \left(u, \frac{a + c}{2} \right) = 0.
\]

(6)
3.2 Vertical Separation

- The network is operated by firm B$_{21}$ which is independent of gas suppliers.

- Firm B$_{22}$ and B$_{23}$ are gas suppliers.

- Every supplier has to pay an access charge to firm B$_{21}$ for each unit of gas it delivers to the consumers.

- If $v \in [0, a - c]$ is the access charge, firm B$_{2k}$ pays $v \times$ the supply by firm B$_{2k}$

 to supply natural gas through the network.
3.2.1 Basic Model

<table>
<thead>
<tr>
<th>Vertical Structure</th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>Monopoly</td>
<td>network size</td>
</tr>
<tr>
<td>Separation</td>
<td>Basic Model</td>
<td>{ network size, access charge }</td>
</tr>
<tr>
<td></td>
<td>Access Charge Regulation</td>
<td>network size</td>
</tr>
<tr>
<td></td>
<td>Two-part Tariff</td>
<td>{ network size, fixed fee, access charge }</td>
</tr>
</tbody>
</table>
cont.

- At the 2nd stage, Firm B_{22} and B_{23} compete with price given
 * the network \((0, u_0 + u]\),
 * the access charge \(v\).

- The Nash equilibrium of this game is
 \[(c + v, c + v).\] \hspace{1cm} (7)

- The total supply to the network \((0, u_0 + u]\) is
 \[
 \frac{(a - c - v)N}{a} \left(1 - e^{-\lambda(u_0+u)}\right).
 \] \hspace{1cm} (8)
At the 1st stage, firm B_{21} is assumed to have perfect foresight. Then, firm B_{21} knows the results of the 2nd stage, that is, (7) and (8).

Firm B_{21}
* extends the network size by \(u \),
* sets the access charge \(v \)
to maximize the profit.

The network expansion cost is \(K_2 \).

The profit of firm B_{21} is

\[
h_{21}(u, v) = v \frac{(a - c - v)N}{a} \left(1 - e^{-\lambda(u_0+u)} \right) - K_2(u) \tag{9}
\]
Theorem 3.2
For the network operator firm B_{21}, the pair of network size and access charge (u, v) maximizing the profit $h_{21}(u, v)$ is

$$
(u, v) = \begin{cases}
(0, \frac{a - c}{2}) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} < K'_2(0) \\
(u^*_2, \frac{a - c}{2}) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} \geq K'_2(0)
\end{cases},
$$

(10)

where u^*_2 is a unique solution of the following equation:

$$
\frac{\partial h_{21}}{\partial u} \left(u, \frac{a - c}{2} \right) = 0.
$$

(11)
Based on Theorem 3.1 and Theorem 3.2, we obtain the following results:

For each one of two cases,

(a) vertical integration,

(b) vertical separation,

the equilibrium gas price is \(\frac{a + c}{2} \).

If \(K'_1 = K'_2 \) holds, the extended network sizes are equal.
cont.

- If \(K_1' < K_2' \)

\[\Rightarrow \] the network size under (b) is not greater than that under (a).

- For example,
 * Firm B₁ is split into
 the transmission network of firm B₁ is carved out and starts operating as a separated firm B₂₁,
 gas supply sector of firm B₁ changes to firm B₂₂.
 * After that, B₂₃ entered this market.

\[\Rightarrow \] the capital cost of firm B₂₁ increases.

\[\Rightarrow K_1' < K_2'. \]
3.2.2 Access Charge Regulation

<table>
<thead>
<tr>
<th>Vertical Structure</th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>network size</td>
<td>price</td>
</tr>
<tr>
<td>Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basic Model</td>
<td></td>
</tr>
<tr>
<td>Access Charge</td>
<td>network size</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Regulation</td>
<td>access charge</td>
<td>competition</td>
</tr>
<tr>
<td></td>
<td>network size</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Access Charge</td>
<td>fixed fee</td>
<td>competition</td>
</tr>
<tr>
<td>Regulation</td>
<td>access charge</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Two-part Tariff</td>
<td></td>
<td>competition</td>
</tr>
</tbody>
</table>
The regulator sets the access charge at a fixed level \(v_0 \in [0, a - c] \).

Apparently, the Nash equilibrium of the 2nd stage game is

\[
(y_2, y_3) = (c + v_0, c + v_0).
\]

(12)

Then,

\[
\frac{\partial h_{2,1}}{\partial u}(u, v_0) = \frac{N \lambda e^{-\lambda (u_0 + u)}}{a} \left\{ - \left(v_0 - \frac{a - c}{2} \right)^2 + \frac{(a - c)^2}{4} \right\} - K_2'(u).
\]

(13)
Corollary 3.2.1

Under the condition that the access charge is given by v_0, the network expansion u maximizing the profit $h_{21}(u, v_0)$ is

$$u = \begin{cases}
0 & \text{for } \frac{N\lambda e^{-\lambda u_0}}{a} \left\{ - \left(v_0 - \frac{a - c}{2} \right)^2 + \frac{(a - c)^2}{4} \right\} < K_2'(0) \\
\bar{u}_2 & \text{for } \frac{N\lambda e^{-\lambda u_0}}{a} \left\{ - \left(v_0 - \frac{a - c}{2} \right)^2 + \frac{(a - c)^2}{4} \right\} \geq K_2'(0)
\end{cases},$$

(14)

where \bar{u}_2 is the unique value which satisfies the following equation

$$\frac{\partial h_{21}}{\partial u}(u, v_0) = 0.$$
cont.

• It is clear that

\[\bar{u}_2 < u_2^* (\leq u_1^*) \text{ for } v_0 \neq \frac{a - c}{2}. \]

• If the regulator does not choose the optimal access charge, which is optimal for the network operator, the network is smaller under the access charge regulation.
3.2.3 Two-part Tariff

<table>
<thead>
<tr>
<th>Vertical Structure</th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integration</td>
<td>network size</td>
<td>price</td>
</tr>
<tr>
<td>Monopoly</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Separation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic Model</td>
<td>network size</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Access Charge</td>
<td>access charge</td>
<td>competition</td>
</tr>
<tr>
<td>Regulation</td>
<td>network size</td>
<td>Bertrand</td>
</tr>
<tr>
<td>Two-part Tariff</td>
<td>fixed fee, access charge</td>
<td>Bertrand competition</td>
</tr>
</tbody>
</table>
Both suppliers put up good-faith deposit to the network operator.

Let a function $L : [0, \infty) \to [0, \infty)$ satisfy

$$L(0) = 0 \text{ and } \frac{dL}{du}(u) > 0.$$

Hereafter, $L'(u) = \frac{dL}{du}(u)$.

A positive constant r denotes the capital cost of each firm.
cont.

- Economic interpretation of L

 * For each $k = 2, 3$, firm B_{2k} is required to deposit $\frac{L(u)}{2}$ into firm B_{21}, before it supplies gas through the network.

 * After the extension, firm B_{21} will refund the money amount back to each supplier.

 * Then,

 * Firm B_{21} has a chance to invest an amount of money $L(u)$, that is, $rL(u)$.

 * Each one of firm B_{22} and firm B_{23} incurs financing cost of $\frac{rL(u)}{2}$.
cont.

- $L(u)$ is assumed to depend on an increment of the network,

 but not to depend on gas supplied by firm B_{22} and firm B_{23}.

- To access the network, each supplier pays a kind of two-part tariff, where $\frac{rL(u)}{2}$ is the fixed fee and v is the variable fee.
cont.

- For firm B_{22} and B_{23}, the profit function is

 \[h_{22}(u, v) + \frac{rL(u)}{2} \]

 \[\Rightarrow \quad \text{The Nash equilibrium at the 2nd stage game is given by (7) that is the same in the basic model.} \]

- The profit function of firm B_{21} is

 \[h_{21}(u, v) + rL(u) \quad (15) \]
Corollary 3.2.2
Suppose that the second derivative of L is not positive. The profit of the transmission operating firm B_{21} is maximized at the following point:

$$
(u, v) = \begin{cases}
(0, \frac{a - c}{2}) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} < K_2'(0) - rL'(0) \\
(u_3^*, \frac{a - c}{2}) & \text{for } \frac{(a - c)^2 N \lambda e^{-\lambda u_0}}{4a} \geq K_2'(0) - rL'(0)
\end{cases}
$$

(16)

where u_3^* is the unique value which satisfies the following equation

$$
\frac{\partial h_{21}}{\partial u} \left(u, \frac{a - c}{2} \right) + rL'(u) = 0.
$$
Corollary 3.2.3

(i) If $K'_1 < K'_2$,

$$L(u) = \frac{K_2(u) - K_1(u)}{r}$$

leads to the same network size achieved in the monopoly case (5).

(ii) In the access charge regulation, that is, a fixed access charge v_0 is adopted,

$$L(u) = \frac{Ne^{-\lambda u}}{ar} \left(v_0 - \frac{a - c}{2} \right)^2 (1 - e^{-\lambda u})$$

gives us the same network size achieved in the basic model (10).
cont.

- L in Corollary 3.2.3 (i):

 Since an increase in the capital cost, which is caused by the vertical separation, is compensated by the gas suppliers, the increment of the network u_1^* is accomplished.

- L in Corollary 3.2.3 (ii):

 Even if the access charge is settled at $v_0 \neq \frac{a - c}{2}$, the total good-faith deposit L yields the increment of the network u_2^*.
cont.

- Supplement

 * If \(L \) satisfies
 \[
 \frac{d}{du} (K_2(u) - rL(u)) > 0 \text{ and } \frac{d^2}{du^2} (K_2(u) - rL(u)) \geq 0,
 \]
 we obtain the same result in Corollary 3.2.2.

 * The design of \(L \) can be applied to implement the desired extension of transmission network.
4 Conclusion and Future Research

Conclusion

Implications of our model:

- Vertical separation decreases incentive to invest in the network extension.
- Access charge regulation also decreases the investment incentive.
- In order to spread the transmission network after the vertical separation, regulations including network access fees should be designed to increase the investment incentive.
Future Research

- Social welfare
- To compare legal vertical separation with accounting separation
- Uncertainty of natural gas price
Thank you for your attention!