Integrated Modeling of the North American Gas & Power Market

Robert Brooks, PhD, RBAC, Inc.
and
Rahul Dhal, PhD, EPIS, LLC.

USAEE 2016
24 October 2016
Tulsa, Oklahoma
Gas and Power Market Modeling Challenges

• **Revolutionary changes in the market**
 • Both gas and power markets are undergoing rapid change
 • Tremendous growth in natural gas production
 • Major restructuring of gas transmission systems
 • Increasingly severe regulation of emissions, including CO₂
 • Large increases in renewable energy and gas-fired generation with numerous coal and nuclear plant closures

• **Separate market models sufficient?**
 • Powerful highly-granular systems which model each market separately are available, but they do not include important aspects of the other market
 • Gas market models do not consider power transmission constraints, emissions regulations, government mandates and technological advances in renewables, etc.
 • Power market models do not consider gas pipeline constraints and expansions, storage, LNG imports and exports, etc.

• **What is the goal?**
 • A useful and realistic model of both gas and power markets
Research and Development Team

• **Dr. Robert Brooks, Founder, RBAC, Inc.**
 - Principal modeling system designer at RBAC
 - RBAC project lead for joint RBAC-EPIS projects

• **Dr. Rahul Dhal, Developer, EPIS, LLC.**
 - AURORAxmp scenario design, implementation, operation, and analysis
 - EPIS project lead for joint RBAC-EPIS projects
Fundamental requirements for useful tools

– **Realistic representation of market structure**
 - The US and Canada are competitive markets
 - Mexico is moving toward a more open market

– **High degree of infrastructure granularity**
 - Model the existing infrastructure, not abstract aggregations
 - Provide means for market-driven capacity additions

– **Detailed models of supply and demand**
 - Drivers must include economics, weather, price response, alternative fuels, government mandates regarding renewables and emissions reduction
Forecasting tools meeting these requirements

• **GPCM® Natural Gas Market Forecasting System**
 - RBAC, Inc., Los Angeles, CA, and Houston, TX
 - First released in 1997
 - Used by over 35 licensees in North America

• **AURORAxmp® Electric Power Model**
 - EPIS, LLC., Sandpoint, ID, Salt Lake City, UT, Portland, OR and Utica, NY
 - Also first released in 1997
 - Used by over 90 energy companies in North And Latin America, Europe, Asia and the Middle East

GPCM is a registered trademark of RT7K, LLC. AURORAxmp is a registered trademark of EPIS, LLC.
GPCM gas market model overview

- **Competitive market clearing model**
 - Non-linear multi-period partial equilibrium model
- **Monthly time frame**
 - Calibrated from Jan-2006 through Jun-2016
 - Forecasts from Jul-2016 through Dec-2040
- **Inputs include**
 - Price sensitive supply and demand functions
 - Detailed pipeline and storage infrastructure model
 - LNG imports and exports assumptions
- **Outputs include**
 - Basin-level natural gas and NGL production
 - State and sector level natural gas demand
 - Henry Hub and other market prices, basis and spreads
 - Detailed pipeline flow and storage activity
 - Pipeline capacity expansion requirements forecast
AURORAxmp power market model overview

- **Fundamentals-based dispatch model**
 - Databases for North America and Europe

- **Chronological solution**
 - Simulates unit commitment and dispatch at hourly or sub-hourly level

- **Time frames supported**
 - Day-ahead to 40 years out

- **Inputs include**
 - Existing, planned and additional required power plants and units
 - Fuel and emissions constraints, RPS and CPP
 - Transmission constraints: zonal or nodal-bus level

- **Outputs include**
 - Location-specific power market prices (zonal or nodal), generator dispatch, fuel burns & emissions, power flows, and capacity expansion requirements.
Can GPCM and AURORAxmp work together?

• GPCM needs a forecast of gas usage in power markets in order to compute gas prices which balance the market

• AURORAxmp needs a forecast of gas prices to compute the optimal fuel mix in power generation

• What happens if we set up an iterative loop between these two systems?
 • Will they produce a mutually consistent solution?
 • If so, how many iterations will be required for “convergence”?
 • How can we speed up the convergence?
 • How can we know when we’re “close enough”?
Combining GPCM and AURORAxmp

- GPCM
- Gas burns
- Gas market and price data
- AURORAxmp
Mathematics of the iterative process

• Let A represent AURORAxmp and G represent GPCM
• Let p and b represent vectors of gas prices and gas burns
• Then
 • $A(p) = b$ and $G(b) = p$
• Therefore
 • $A(G(b)) = AG(b) = b$ and
 • $G(A(p)) = GA(p) = p$
• The problem is now defined as finding two fixed points, the vectors b and p, for the combined functions AG and GA
• In R & D conducted during March-April 2015, RBAC and EPIS designed and tested three different trial methods for finding these fixed points using fixed point iteration
Iterative procedure: three trial methods

• **Method 1: Simple loop**
 • Send GPCM market prices as-is to AURORAxmp and send AURORAxmp gas-burns as-is to GPCM

• **Method 2: Average of last two runs**
 • Send straight average of last two sets of market prices from GPCM to AURORAxmp and send straight average gas-burns from last two AURORAxmp runs to GPCM

• **Method 3: Exponential average of prior runs**
 • Send exponential average of **all** prior sets of market prices from GPCM to AURORAxmp and of **all** prior gas-burns from AURORAxmp to GPCM
Method 1: HH Price & US Gas-Burn by Iteration

Average Monthly HH Price vs US ELC Demand by Iteration

- HH Price
- US ELC Demand

The chart shows the average monthly HH price and US ELC demand by iteration, with iterations from M1 IT1 to M1 IT7.
Method 2: HH Price & US Gas-Burn by Iteration

Average Monthly HH Price vs US ELC Demand by Iteration

- HH Price
- US ELC Demand
Method 3: HH Price & US Gas-Burn by Iteration

Average Monthly HH Price vs US ELC Demand by Iteration

- HH Price
- US ELC Demand
Conclusions of the algorithm development task

- Method 1 (simple iteration of prices and gas-burns) converged to a simple 2-iteration limit cycle rather than a single value for the vector of prices and gas-burns.
- Method 2 (averaging two most recent sets of prices and gas-burns) converges to a more complex limit cycle of four iterations, but not to a single value.
- Method 3 (exponential averaging) converges to an acceptable solution for both GPCM (prices) and AURORAxmp (gas-burns):
 - Exponential weights of 0.500 and of 0.618 (Golden Mean: ϕ) both worked, with ϕ producing a faster convergence.
- See Appendix 1 for method 3 algorithm.
- See Appendix 2 for proposed research topics.
Application to a current issue: the CPP

- What is the CPP?
- What are its intended effects?
- How should it be modeled?
- What does the combined GPCM-AURORAxmp model predict for
 - Effect on power and gas prices?
 - Effect on future generation mix and fuel use?
 - Effect on requirements for new power generation and gas pipeline capacity?
The Clean Power Plan

- Clean Power Plan is a proposed legislation from Environmental Protection Agency aimed at limiting carbon pollution from power generation
- States have various options to meet the reduction goal
 - A rate-based state goal measured in lb/MWh;
 - A mass-based state goal measured in total tons of CO2;
 - A mass-based state goal with a new source complement measured in total short tons of CO2.
- States are allowed to group together and/or form emission trading markets

Note:
- The Supreme Court has stayed the legislation while the judiciary deliberates on CPP’s merits and legality.
- Some form emission reduction legislation is expected to be in effect in near future
Intended Effects of CPP

- EPA’s expectation for CPP (when in effect) is that it will **accelerate the transition clean energy**
 - **Fossil fuels** will continue to be **critical in near future**
 - Emphasis is on **making fossil fuels efficient**, while
 - Fostering **expansion of zero- and low-emitting power sources**
- CPP objectives also need to consider **reliability issues**.
- **Reliability of power generation is somewhat incongruous with CPP objective**
 - Cheapest way to ensure reliability is through fossil-fuels
 - Renewables are intermittent; storage technology is still embryonic; nuclear is expensive and lacks general support
 - State need to demonstrate reliability issues have been considered in the emission reduction plan.
Two Scenarios: No CPP and CPP

- No CPP
 - Assumes CPP is not implemented but …
 - State level RPS plans are enforced
- CPP
 - Assumes CPP is implemented as follows:
 1. Mass-Based New Source Complement target
 - Targets were derived based on EPA’s estimates
 2. Carbon target become binding in 2022
 - Targets are progressively more binding till 2030, after which they remain constant
 3. States independently meet their targets
 - And state level RPS plans are also enforced
- Forecast Horizon: Jan-2017 to Dec-2040 (monthly)
No CPP Case: Gasburn vs Henry Hub Price
CPP Case: Gasburn vs Henry Hub Price
Gasburn Change vs Henry Hub Price Change
Average Monthly Gas-Burn by Iteration
Total Gasburn Change: IT5 vs IT4
Henry Hub Price Change: IT5 vs IT4
Dracut (No MA) Price Change: IT5 vs IT4
Conclusions

• The Clean Power Plan reduces demand for natural gas
 • Renewables growth reduces coal and gas generation
• This reduction lowers prices and frees up gas for other use
 • Industrial demand
 • Pipeline exports to Mexico
 • LNG Exports to Latin America, Asia, Europe
• The combined gas-power market model methodology works
 • Reasonable convergence (1-2%) in most markets achieved within five iterations for both models
• Local exceptions can occur
 • Dracut price point still oscillating after 5 iterations
 • Fuel switching between natural gas and fuel oil might be causing this trouble
Appendix 1: Method 3 Algorithm

- Let A represent AURORAxmp, G represent GPCM, and p and b represent vectors of gas prices and gas burns, respectively.
- Define two new vectors, π and β, as follows, where ϕ is a parameter on the interval $(0,1]$, and $n = 0, 1, 2, \ldots$:
 - $\beta_{n+1} = \phi * b_n + (1 - \phi) * \beta_n$
 - $\pi_{n+1} = \phi * p_{n+1} + (1 - \phi) * \pi_n$
- Given π_0 = initial price vector from GPCM, not necessarily based on AURORAxmp gas-burn, and $n = 0$:
- While process has not yet converged
 - Compute gas-burns: $b_n = A(\pi_n)$
 - Compute weighted gas-burn: $\beta_n = \phi * b_{n-1} + (1 - \phi) * \beta_{n-1}$
 - if $n=0$ set $\beta_0 = b_0$
 - Compute prices: $p_{n+1} = G(\beta_n)$
 - Compute weighted prices: $\pi_{n+1} = \phi * p_{n+1} + (1 - \phi) * \pi_n$
 - Iterate ($n = n + 1$)
- Note: convergence or cycling criterion is defined using differences in prices or gas-burns between consecutive or every other iteration.
Appendix 2: Proposed research topics

- Experimental program using different values of the exponential weighting factor
- More rigorous mathematical analysis of the convergence requirements and properties of various fixed point iteration schemes
- Experimental program using an adaptive algorithm where the value of the weighting function for the next iteration depends on the results of prior iterations.
 - Can an algorithm be defined which speeds convergence with such an approach?
 - What are the mathematics behind it?
Contact Information

- **RBAC, Inc.**, http://www.rbac.com
 - 14930 Ventura Blvd, Suite 210, Sherman Oaks CA 91403
 - Robert Brooks, PhD, rebrooks@rbac.com
 - Bethel King, bking@rbac.com

- **EPIS, LLC.** http://www.epis.com
 - 1218 N. Division Ave, Suite 201 • Sandpoint, ID 83864
 - Ben Thompson, CEO, benthompson@epis.com
 - Rahul Dhal, PhD, rahuldhal@epis.com