Renewable Sources, Technology mix, and Competition in Liberalized Electricity Markets: The case of Spain

USAEE 2010, Calgary

A. Ciarreta1 C. Gutiérrez2 N. Georgantzís3

USAEE 2010 Conference

1Department of Economic Analysis II, University of the Basque country
2Dept. Economic and Financial Studies, Universitas Miguel Hernández
3GLOBE and Dept. de Teoría e Historia Económica, Universidad de Granada.
Outline of the presentation

- Motivation
- Literature
- The Model
- Contingent scenarios and possible market results
- Spanish case
 1. Descriptive statistics
 2. Analysis
- Conclusions and further research
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables

- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables
- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables

- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...

- RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22.1%.
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables
- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...
- RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22.1%.
- Spain is at the target!
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables

- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...

- RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22.1%.

- Spain is at the target!

Open Issues:
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables

- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...

- RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22.1%.

- Spain is at the target!

Open Issues:

1. Is the electricity market ready to incorporate renewables?
Motivation

- The use and exploitation of energy sources is growing and will continue to do so in the near future.
 - Renewables versus non-renewables energy consumption
 - Externalities versus economic cost of renewables
 - Depletion of non-renewables

- The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.
 - Reliability, support programs, positive externalities ...

- RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22.1%.

- Spain is at the target!

Open Issues:

1. Is the electricity market ready to *incorporate* renewables?
2. Is the regulatory framework well-defined?
Motivation

The use and exploitation of energy sources is growing and will continue to do so in the near future.

- Renewables versus non-renewables energy consumption
- Externalities versus economic cost of renewables
- Depletion of non-renewables

The generation of electricity from renewable sources in liberalized electricity markets is an important energy issue at debate.

- Reliability, support programs, positive externalities ...

RES-E White Paper states that by 2010 the share of electricity produced from RES in the EU should (must) be 22,1%.

Spain is at the target!

Open Issues:

1. Is the electricity market ready to incorporate renewables?
2. Is the regulatory framework well-defined?
3. What about the short-run perspectives? and in the long-run?
Policy mechanisms to support renewable sources within EU members are focused mainly on financial instruments:

- Price-based systems (Germany, France, Spain and Denmark which apply feed-in tariffs).
Motivation, III

- Quota-based systems,

\[Q_{Ra} + Q_{Rb} = \hat{Q} \]

Quota-based system

The model

- Two firms generate electricity by using two inputs: non-renewables sources, F; and renewables sources, R.
- Technology mix yields differences in the cost structure arising from,
The model

- Two firms generate electricity by using two inputs: non-renewables sources, \(F \); and renewables sources, \(R \).

- Technology mix yields differences in the cost structure arising from,

 1. Technical efficiency and cost-savings: RES are still less efficient than fossil fuels. Improvements are needed to reach the modularity (complementarity) between different renewable sources.
The model

- Two firms generate electricity by using two inputs: non-renewables sources, F; and renewables sources, R.

- Technology mix yields differences in the cost structure arising from,
 1. *Technical efficiency and cost-savings*: RES are still less efficient than fossil fuels. Improvements are needed to reach the modularity (complementarity) between different renewable sources.
 2. *Environmental and social costs*: fossil sources have a negative environmental impact with result in climate change. Regulators should account for such costs when assessing the total impact of using fossil sources.
The model

- Two firms generate electricity by using two inputs: non-renewables sources, \(F \); and renewables sources, \(R \).

- Technology mix yields differences in the cost structure arising from,
 1. **Technical efficiency and cost-savings**: RES are still less efficient than fossil fuels. Improvements are needed to reach the modularity (complementarity) between different renewable sources.
 2. **Environmental and social costs**: fossil sources have a negative environmental impact with result in climate change. Regulators should account for such costs when assessing the total impact of using fossil sources.

- Firms minimize costs in each plant:

 Fossil plant \(\begin{align*}
 \text{MIN} & \quad c_F F + \Omega \\
 \text{s.t.} & \quad F^\alpha = q_i^F,
 \end{align*} \)

 Renewable plant \(\begin{align*}
 \text{MIN} & \quad c_R R + \Omega \\
 \text{s.t.} & \quad [R/\phi(e)]^\alpha = q_i^R,
 \end{align*} \)

 \(\phi(e) \in \mathbb{R} \) specifies technical maturity, with \(\phi(0) = 1 \), and \(\phi'(e) < 0 \).
The model, II

- Cost function: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) (q_i^R)^2, \ i = 1, 2. \)
The model, II

- Cost function: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) \cdot (q_i^R)^2, \quad i = 1, 2. \)

- The total amount of electricity produced: \(\sum_{j=F,R} \sum_{i=1,2} q_i^j = Q. \)
Cost function: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) \cdot (q_i^R)^2, \quad i = 1, 2. \)

The total amount of electricity produced: \(\sum_{j=F,R} \sum_{i=1,2} q_i^j = Q. \)

Demand function: \(D(\omega) = 1 - \omega, \) (known ex-post).
Cost function: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) \cdot (q_i^R)^2, \ i = 1, 2. \)

The total amount of electricity produced: \(\sum_{j=F,R} \sum_{i=1,2} q_i^j = Q. \)

Demand function: \(D(\omega) = 1 - \omega, \) (known ex-post).

Regulator incentives each kWh from renewables with \(0 < \tau < 1; \) then total payment is \(\omega(1 + \tau). \)
The model, II

- **Cost function**: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) \cdot (q_i^R)^2, \ i = 1, 2. \)
- The total amount of electricity produced: \(\sum_{j=F,R} \sum_{i=1,2} q_i^j = Q. \)
- **Demand function**: \(D(\omega) = 1 - \omega, \) (known ex-post).
- Regulator incentives each kWh from renewables with \(0 < \tau < 1; \) then total payment is \(\omega(1 + \tau). \)
- **Firms submit supply functions for each type**
 \(S_i(\beta_i) = \beta_i^F \omega + \beta_i^R \omega(1 + \tau), \ i = 1, 2. \) where \(\beta_i = (\beta_i^F, \beta_i^R), \ i = 1, 2. \)
The model, II

- Cost function: \(C_i(q_i) = c_F \cdot (q_i^F)^2 + c_R \cdot \phi(e) \cdot (q_i^R)^2, \quad i = 1, 2. \)
- The total amount of electricity produced: \(\sum_{j=F,R} \sum_{i=1,2} q_i^j = Q. \)
- Demand function: \(D(\omega) = 1 - \omega, \) (known ex-post).
- Regulator incentives each kWh from renewables with \(0 < \tau < 1; \) then total payment is \(\omega(1 + \tau). \)
- Firms submit supply functions for each type \(S_i(\beta_i) = \beta_i^F \omega + \beta_i^R \omega(1 + \tau), \quad i = 1, 2. \) where \(\beta_i = (\beta_i^F, \beta_i^R), \quad i = 1, 2. \)

Market clearing condition \(\sum_{i=1,2} S_i(\beta_i) = D(\omega), \)

\[
\omega(\beta) = \frac{1}{1 \cdot p' + \sum_{i=1,2} \beta_i \cdot p'},
\]

where \(\beta = (\beta_1, \beta_2) \) and \(p = [1, (1 + \tau)]. \)
(β^{SN}_i, β^{SN}_j) is a SN equilibrium such that each firm is maximizing profits
β^{SN}_i ∈ \arg \max_{\omega_i} \pi_i(\beta_i) - C_h(\beta_i, \omega_i(\beta)), \text{ for } i, j = 1, 2, i \neq j.
Definition

$(\beta_i^{SN}, \beta_j^{SN})$ is a SN equilibrium such that each firm is maximizing profits

\[\beta_i^{SN} \in \arg \max_{\beta_i} S_i(\beta_i)\omega(\beta) - C_h(\beta_i\omega(\beta)), \text{ for } i, j = 1, 2, \ldots, i \neq j. \]

- Each firm chooses its profit-maximizing SN strategy, β_i^{SN}

\[\max_{\beta_i} S_i(\beta_i)\omega(\beta) - C_h(\beta_i\omega(\beta)) \]

Assumption: normalize $c_R = 1 \implies c_F$ and $\phi(e)$ measures differences in marginal costs.

A. Ciarreta, C. Gutiérrez, N. Georgantzís

Renewable Sources, Technology mix, and Competition in Liberalized Electricity Markets: The case of Spain

USAEE 2010 Conference
The model, III

Definition

\((\beta_{i}^{SN}, \beta_{j}^{SN})\) is a SN equilibrium such that each firm is maximizing profits
\[
\beta_{i}^{SN} \in \arg \max_{\beta_{i}} S_{i}(\beta_{i})\omega(\beta) - C_{h}(\beta_{i}\omega(\beta)), \text{ for } i, j = 1, 2, ..., i \neq j.
\]

- Each firm chooses its profit-maximizing SN strategy, \(\beta_{i}^{SN}\)
 \[
 \max_{\beta_{i}} S_{i}(\beta_{i})\omega(\beta) - C_{h}(\beta_{i}\omega(\beta))
 \]

Assumption: normalize \(c_{R} = 1 \implies c_{F}\) and \(\phi(e)\) measures differences in marginal costs.

- Equilibrium quantity and prices:
 \[
 \hat{q}_{i}^{F} = \hat{q}_{i}^{R}(1 + \tau) - \frac{\phi(e) - 4\tau - c_{F}}{4\theta}, \quad \hat{q}_{i}^{R} = \frac{\theta + 2\tau - c_{F}}{4\theta(1 + \tau)}, \quad \hat{\omega} = \frac{\phi(e) + c_{F}}{2\theta},
 \]
Definition

\((\beta_i^{SN}, \beta_j^{SN})\) is a SN equilibrium such that each firm is maximizing profits \(\beta_i^{SN} \in \arg \max_{\beta_i} S_i(\beta_i)\omega(\beta) - C_h(\beta_i\omega(\beta))\), for \(i, j = 1, 2, \ldots, i \neq j\).

- Each firm chooses its profit-maximizing SN strategy, \(\beta_i^{SN}\)

\[
\max_{\beta_i} S_i(\beta_i)\omega(\beta) - C_h(\beta_i\omega(\beta))
\]

Assumption: normalize \(c_R = 1 \implies c_F\) and \(\phi(e)\) measures differences in marginal costs.

- Equilibrium quantity and prices:

\[
\hat{q}_i^F = \hat{q}_i^R (1 + \tau) - \frac{\phi(e) - 4\tau - c_F}{4\theta}, \quad \hat{q}_i^R = \frac{\theta + 2\tau - c_F}{4\theta(1+\tau)}, \quad \hat{\omega} = \frac{\phi(e) + c_F}{2\theta},
\]

- Equilibrium profits:

\[
\hat{\pi}_i = \frac{(\phi(e) + c_F)(2\theta - \phi(e) - c_F)}{8\theta^2} - \frac{c_F(\phi(e) + 2\tau - \theta)^2}{32\theta^2} - \frac{\phi(e)(2\tau + \theta - c_F)^2}{32\theta^2(1+\tau)^2}
\]

\(\theta(\phi(e), c_F, \tau), \theta_{\phi(e)} > 0, \theta_\tau > 0, \text{ and } \theta_{c_F} < 0\)
Contingent scenarios and possible market results

Consider these three cases:

- **Scenario 1: Status quo**: $\phi(e) > c_F$.
Consider these three cases:

- **Scenario 1: Status quo:** $\phi(e) > c_F$.
- **Scenario 2: Efficiency improvement to equal marginal cost:**

 $\phi(e) = c_F$.

General result: regardless the scenario considered the model states

1. $\frac{\partial}{\partial \tau} \left(\frac{b_q F_i}{b_q R_i} \right) < 0$; the ratio $\frac{b_q F_i}{b_q R_i}$ is decreasing in the subsidy.
2. $\frac{\partial}{\partial \tau} (b Q) < 0$; total electricity produced decreases with the subsidy;
3. $\frac{\partial}{\partial \tau} (b \omega) < 0$; wholesale price decreases with the subsidy.
Contingent scenarios and possible market results

Consider these three cases:

- **Scenario 1:** Status quo: $\phi(e) > c_F$.
- **Scenario 2:** Efficiency improvement to equal marginal cost: $\phi(e) = c_F$.
- **Scenario 3:** Renewables technical maturity above fossil sources: $\phi(e) < c_F$.

General result: regardless the scenario considered the model states:

1. $\frac{\partial (b_Q F_i b_Q R_i)}{\partial \tau} < 0$; the ratio $b_Q F_i / b_Q R_i$ is decreasing in the subsidy.
2. $\frac{\partial b_Q}{\partial \tau} < 0$; total electricity produced decreases with the subsidy;
3. $\frac{\partial b_\omega}{\partial \tau} < 0$; wholesale price decreases with the subsidy.
Contingent scenarios and possible market results

Consider these three cases:

- **Scenario 1: Status quo**: \(\phi(e) > c_F \).
- **Scenario 2: Efficiency improvement to equal marginal cost**: \(\phi(e) = c_F \).
- **Scenario 3: Renewables technical maturity above fossil sources**: \(\phi(e) < c_F \).

General result: regardless the scenario considered the model states that,

\[\frac{\partial}{\partial \tau} \left(\frac{b q_F}{b q_R} \right) < 0; \text{the ratio} \frac{b q_F}{b q_R} \text{is decreasing in the subsidy}; \]
\[\frac{\partial}{\partial \tau} \left(b Q \right) < 0; \text{total electricity produced decreases with the subsidy}; \]
\[\frac{\partial}{\partial \tau} \left(b \omega \right) < 0; \text{wholesale price decreases with the subsidy}. \]
Contingent scenarios and possible market results

Consider these three cases:

- **Scenario 1**: Status quo: \(\phi(e) > c_F \).
- **Scenario 2**: Efficiency improvement to equal marginal cost: \(\phi(e) = c_F \).
- **Scenario 3**: Renewables technical maturity above fossil sources: \(\phi(e) < c_F \).

General result: regardless the scenario considered the model states that,

\[\frac{\partial (\hat{q}_i^F / \hat{q}_i^R)}{\partial \tau} < 0; \] the ratio \(\hat{q}_i^F / \hat{q}_i^R \) is decreasing in the subsidy.
Consider these three cases:

- **Scenario 1**: Status quo: \(\phi(e) > c_F \).
- **Scenario 2**: Efficiency improvement to equal marginal cost: \(\phi(e) = c_F \).
- **Scenario 3**: Renewables technical maturity above fossil sources: \(\phi(e) < c_F \).

General result: regardless the scenario considered the model states that,

1. \(\partial (\frac{\hat{q}_i^F}{\hat{q}_i^R}) / \partial \tau < 0 \); the ratio \(\frac{\hat{q}_i^F}{\hat{q}_i^R} \) is decreasing in the subsidy.
2. \(\partial (\hat{Q}) / \partial \tau < 0 \); total electricity produced decreases with the subsidy;
Contingent scenarios and possible market results

Consider these three cases:

- **Scenario 1**: Status quo: $\phi(e) > c_F$.
- **Scenario 2**: Efficiency improvement to equal marginal cost: $\phi(e) = c_F$.
- **Scenario 3**: Renewables technical maturity above fossil sources: $\phi(e) < c_F$.

General result: regardless the scenario considered the model states that,

1. $\partial(\hat{q}_i^F / \hat{q}_i^R) / \partial \tau < 0$; the ratio $\hat{q}_i^F / \hat{q}_i^R$ is decreasing in the subsidy.
2. $\partial(Q) / \partial \tau < 0$; total electricity produced decreases with the subsidy.
3. $\partial(\hat{\omega}) / \partial \tau < 0$; wholesale price decreases with the subsidy.
Scenario 1

\[\phi(e) = \frac{1}{1+e}, \quad c_F = \frac{3}{2} \text{ and } \tau \in \{0, 0.25\} \]

- Status quo: \(\phi(e) > c_F \). \(e = -\frac{1}{2} \implies \phi(-\frac{1}{2}) = 2 \)

| Table 1. Simulation for \(e = -1/2 \). |
|---|---|---|---|---|
| \(\pi_i^{SN} \) | \((q_i^F)^{SN} \) | \((q_i^R)^{SN} \) | \(Q^{SN} \) | \(\omega^{SN} \) |
| \(\tau = 0 \) | .085 | .165 | .124 | .578 | .422 |
| \(\tau = 0.25 \) | .089 | .140 | .125 | .530 | .405 |
Scenario 2

\[\phi(e) = \frac{1}{1 + e}, \quad c_F = 3/2 \text{ and } \tau \in \{0, 0.25\} \]

- Equal marginal cost: \(\phi(e) = c_F \). \[e = \frac{1}{c_F} - 1 < 0 \implies \phi\left(\frac{1}{c_F} - 1\right) = 3/2. \]

| Table 2. Simulation for \(e = \left(\frac{1}{c_F}\right) - 1 \). |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| | \(\pi_i^{SN} \) | \((q_i^F)^{SN} \) | \((q_i^R)^{SN} \) | \(Q^{SN} \) | \(\omega^{SN} \) |
| \(\tau = 0 \) | .085 | .150 | .150 | .600 | .400 |
| \(\tau = 0.25 \) | .089 | .123 | .149 | .544 | .381 |
Scenario 3

\[\phi(e) = \frac{1}{1 + e}, \quad c_F = 3/2 \text{ and } \tau \in \{0, 0.25\} \]

- RES technical maturity above fossil sources: \(\phi(e) < c_F \).
- \(e \in \{0, 1/2\} \implies \phi(0) = \{1, 2/3\} \).

Table 3. Simulation for \(e = 0 \).

<table>
<thead>
<tr>
<th>(\pi^S N_i)</th>
<th>((q^F_i)^S N)</th>
<th>((q^R_i)^S N)</th>
<th>(Q^S N)</th>
<th>(\omega^S N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau = 0)</td>
<td>.084</td>
<td>.127</td>
<td>.191</td>
<td>.636</td>
</tr>
<tr>
<td>(\tau = 0.25)</td>
<td>.088</td>
<td>.097</td>
<td>.185</td>
<td>.564</td>
</tr>
</tbody>
</table>

Table 4. Simulation for \(e = 1/2 \).

<table>
<thead>
<tr>
<th>(\pi^S N_i)</th>
<th>((q^F_i)^S N)</th>
<th>((q^R_i)^S N)</th>
<th>(Q^S N)</th>
<th>(\omega^S N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau = 0)</td>
<td>.082</td>
<td>.103</td>
<td>.235</td>
<td>.676</td>
</tr>
<tr>
<td>(\tau = 0.25)</td>
<td>.085</td>
<td>.071</td>
<td>.221</td>
<td>.584</td>
</tr>
</tbody>
</table>
Spanish case. Descriptive analysis

- Electricity traded by technologies,

<table>
<thead>
<tr>
<th>Special Regime</th>
<th>Thermal Distr. Pool</th>
<th>HY</th>
<th>NU</th>
<th>CB</th>
<th>CC</th>
<th>OF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>33,1</td>
<td>0,55</td>
<td>21,2</td>
<td>9,2</td>
<td>41,6</td>
<td>77,4</td>
<td>187,2</td>
</tr>
<tr>
<td>03</td>
<td>32,5</td>
<td>5,06</td>
<td>36,3</td>
<td>1,7</td>
<td>81,6</td>
<td>47,3</td>
<td>239,9</td>
</tr>
<tr>
<td>04</td>
<td>35,9</td>
<td>6,50</td>
<td>28,1</td>
<td>1,7</td>
<td>81,4</td>
<td>21,4</td>
<td>77,7</td>
</tr>
<tr>
<td>05</td>
<td>25,8</td>
<td>6,23</td>
<td>9,8</td>
<td>6,7</td>
<td>55,5</td>
<td>4,74</td>
<td>84,7</td>
</tr>
<tr>
<td>06</td>
<td>1,4</td>
<td>2,16</td>
<td>8,1</td>
<td>11,7</td>
<td>54,5</td>
<td>4,42</td>
<td>74,7</td>
</tr>
<tr>
<td>07</td>
<td>0,57</td>
<td>0,26</td>
<td>7,9</td>
<td>91,7</td>
<td>16,9</td>
<td>7,53</td>
<td>0,46</td>
</tr>
<tr>
<td>08</td>
<td>0,65</td>
<td>6,20</td>
<td>4,6</td>
<td>79,5</td>
<td>0,43</td>
<td>5,82</td>
<td>0,43</td>
</tr>
</tbody>
</table>
Spanish case. Descriptive analysis

- Electricity traded by technologies,

<table>
<thead>
<tr>
<th>Year</th>
<th>Distr.</th>
<th>Pool</th>
<th>HY</th>
<th>M</th>
<th>NU</th>
<th>CB</th>
<th>CC</th>
<th>OF</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td>33,1</td>
<td>0,55</td>
<td>21,2</td>
<td>9,41</td>
<td>60,6</td>
<td>77,4</td>
<td>4,69</td>
<td>11,4</td>
<td>218,4</td>
</tr>
<tr>
<td>03</td>
<td>32,5</td>
<td>5,06</td>
<td>36,3</td>
<td>8,11</td>
<td>59,6</td>
<td>72,3</td>
<td>11,7</td>
<td>6,21</td>
<td>231,9</td>
</tr>
<tr>
<td>04</td>
<td>35,9</td>
<td>6,50</td>
<td>28,1</td>
<td>7,81</td>
<td>61,4</td>
<td>73,2</td>
<td>21,4</td>
<td>4,77</td>
<td>239,2</td>
</tr>
<tr>
<td>05</td>
<td>25,8</td>
<td>23,2</td>
<td>15,9</td>
<td>8,67</td>
<td>55,4</td>
<td>74,7</td>
<td>45,2</td>
<td>7,84</td>
<td>256,7</td>
</tr>
<tr>
<td>06</td>
<td>6,1</td>
<td>40,2</td>
<td>16,8</td>
<td>11,7</td>
<td>54,5</td>
<td>51,4</td>
<td>42,7</td>
<td>4,39</td>
<td>227,9</td>
</tr>
<tr>
<td>07</td>
<td>0</td>
<td>57,0</td>
<td>26,7</td>
<td>9,91</td>
<td>53,1</td>
<td>69,7</td>
<td>53,9</td>
<td>4,06</td>
<td>274,5</td>
</tr>
<tr>
<td>08</td>
<td>0</td>
<td>65,6</td>
<td>20,4</td>
<td>6,79</td>
<td>57,0</td>
<td>43,5</td>
<td>82,0</td>
<td>4,39</td>
<td>279,8</td>
</tr>
</tbody>
</table>

Spanish case. Descriptive analysis, II

Iberdrola and Endesa are pivotal firms in generation.

<table>
<thead>
<tr>
<th>Firm</th>
<th>2002</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% hours</td>
<td>From RES</td>
</tr>
<tr>
<td></td>
<td>Hy</td>
<td>Non-hy</td>
</tr>
<tr>
<td>IB</td>
<td>42.5</td>
<td>40.1</td>
</tr>
<tr>
<td>Peak IB</td>
<td>72.5</td>
<td>71.8</td>
</tr>
<tr>
<td>Off-Peak IB</td>
<td>10.9</td>
<td>6.5</td>
</tr>
<tr>
<td>EN</td>
<td>23.4</td>
<td>7.2</td>
</tr>
<tr>
<td>Peak EN</td>
<td>12.3</td>
<td>11.6</td>
</tr>
<tr>
<td>Off-Peak EN</td>
<td>36.4</td>
<td>0</td>
</tr>
</tbody>
</table>
Iberdrola has larger renewable power generation than Endesa

Table 7. Generators’ Capacity (GW)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HY</td>
<td>5.2</td>
<td>5.3</td>
<td>8.5</td>
<td>8.6</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>RES</td>
<td>0.2</td>
<td>2.9</td>
<td>0.1</td>
<td>5.5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total RES</td>
<td>5.4</td>
<td>8.2</td>
<td>8.7</td>
<td>14.1</td>
<td>1.8</td>
<td>2.8</td>
</tr>
<tr>
<td>NU</td>
<td>3.6</td>
<td>3.6</td>
<td>3.3</td>
<td>3.3</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>CB</td>
<td>5.8</td>
<td>5.8</td>
<td>1.2</td>
<td>1.3</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>OF</td>
<td>1.5</td>
<td>1.3</td>
<td>2.0</td>
<td>2.0</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>CC</td>
<td>1.4</td>
<td>2.4</td>
<td>3.2</td>
<td>6.0</td>
<td>2.1</td>
<td>4.0</td>
</tr>
<tr>
<td>Total FOSSIL</td>
<td>12.3</td>
<td>13.1</td>
<td>9.7</td>
<td>12.5</td>
<td>5.8</td>
<td>7.5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17.7</td>
<td>21.6</td>
<td>18.4</td>
<td>26.6</td>
<td>7.5</td>
<td>10.3</td>
</tr>
</tbody>
</table>

Sources: Firms’ web pages, REE, and OMEL.
Islands not included. Provisional values for 2008.
Market shares in generation EN and IB

Table 8.- Market shares

<table>
<thead>
<tr>
<th></th>
<th>IB</th>
<th>EN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.43</td>
<td>0.30</td>
</tr>
<tr>
<td>2008</td>
<td>0.25</td>
<td>0.20</td>
</tr>
</tbody>
</table>
Table 9 - Summary statistics of variables

<table>
<thead>
<tr>
<th>Dep. Variable</th>
<th>Mean</th>
<th>Std. dev.</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMP</td>
<td>29.51</td>
<td>18.97</td>
<td>0</td>
<td>180.3</td>
</tr>
<tr>
<td>Indep. Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NU</td>
<td>6419</td>
<td>926</td>
<td>3176</td>
<td>7560</td>
</tr>
<tr>
<td>TH</td>
<td>13619</td>
<td>4082</td>
<td>1382</td>
<td>26539</td>
</tr>
<tr>
<td>HY</td>
<td>3522</td>
<td>2520</td>
<td>4.5</td>
<td>16450</td>
</tr>
<tr>
<td>RES</td>
<td>5916</td>
<td>2207</td>
<td>2151</td>
<td>17943</td>
</tr>
</tbody>
</table>

Source: OMEL, CNE and own calculations
Spanish case. Analysis

<table>
<thead>
<tr>
<th>Table 9 - Summary statistics of variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Variable</td>
</tr>
<tr>
<td>SMP</td>
</tr>
<tr>
<td>Skewness 1.087 Kurtosis 5.597 Sktest Reject J-B Test Reject ADF test I (0)</td>
</tr>
<tr>
<td>Indep. Variables</td>
</tr>
<tr>
<td>NU</td>
</tr>
<tr>
<td>Skewness -0.737 Kurtosis 3.649 Sktest Reject J-B Test Reject ADF test I (0)</td>
</tr>
<tr>
<td>TH</td>
</tr>
<tr>
<td>Skewness 0.114 Kurtosis 2.735 Sktest Reject J-B Test Reject ADF test I (0)</td>
</tr>
<tr>
<td>HY</td>
</tr>
<tr>
<td>Skewness 0.987 Kurtosis 3.705 Sktest Reject J-B Test Reject ADF test I (0)</td>
</tr>
<tr>
<td>RES</td>
</tr>
<tr>
<td>Skewness 1.269 Kurtosis 4.984 Sktest Reject J-B Test Reject ADF test I (0)</td>
</tr>
</tbody>
</table>

Source: OMEL, CNE and own calculations
Behavior of the SMP depends on
Behavior of the SMP depends on

- Past values of the SMP: Existence of autocorrelation within the day
Behavior of the SMP depends on
- Past values of the SMP: Existence of autocorrelation within the day
- Declared capacity of the plants the day before.
Behavior of the SMP depends on

- Past values of the SMP: Existence of autocorrelation within the day
- Declared capacity of the plants the day before.

Model:

\[
\ln SMP_t = \alpha + \sum_{\tau=1}^{23} \beta_\tau \ln SMP_{t-\tau} +
\gamma_1 K_{t-24}^N + \gamma_2 K_{t-24}^{TH} + \gamma_3 K_{t-24}^{HY} + \gamma_4 K_{t-24}^{RES} + \Phi \cdot REG_t + \varepsilon_t
\]
Step 1: OLS estimation. Ljung-Box test does not reject the hypothesis of the existence of arch-effects. A garch model can be fitted.
Step 1: OLS estimation. Ljung-Box test does not reject the hypothesis of the existence of arch-effects. A garch model can be fitted.

Estimation results:

<table>
<thead>
<tr>
<th>Estimation from two alternative models</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Nu</td>
</tr>
<tr>
<td>Th</td>
</tr>
<tr>
<td>Hy</td>
</tr>
<tr>
<td>RES</td>
</tr>
</tbody>
</table>

ARCH effects 1 24
Reg. Dummies NO YES
Log likelihood -55563 -59586

***Significant at 1%. * Significant at 10%
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.

IEA predictions over renewable energy increments depend on country-specific policies. The OECD area is expected to lead the 'renewable sources revolution' by means of policy suggestions to the member states. The special regime must encourage trading renewable energy at the pool in order to increase efficiency. Increasing the share of renewable sources strongly depends on subsidies and technological innovations. Preliminary estimation results for the period 2002-2008 show how market prices are higher when the share of hydroelectricity is higher. Although result depends on controls.
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.

- IEA predictions over renewable energy increments depend on country-specific policies.
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.
- IEA predictions over renewable energy increments depend on country-specific policies.
- The OECD area is expected to lead the ‘renewable sources revolution’ by means of policy suggestions to the member states.
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.

- IEA predictions over renewable energy increments depend on country-specific policies.

- The OECD area is expected to lead the ‘renewable sources revolution’ by means of policy suggestions to the member states.

- The special regime must encourage trading renewable energy at the pool in order to increase efficiency.
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.
- IEA predictions over renewable energy increments depend on country-specific policies.
- The OECD area is expected to lead the ‘renewable sources revolution’ by means of policy suggestions to the member states.
- The *special regime* must encourage trading renewable energy at the pool in order to increase efficiency.
- Increasing the share of renewable sources strongly depends on subsidies and technological innovations.
Conclusions and further research

- Fossil resources are scarce, produced at high prices, and cause environmental problems that make the actual electric technology mix unsustainable.
- IEA predictions over renewable energy increments depend on country-specific policies.
- The OECD area is expected to lead the ‘renewable sources revolution’ by means of policy suggestions to the member states.
- The *special regime* must encourage trading renewable energy at the pool in order to increase efficiency.
- Increasing the share of renewable sources strongly depends on subsidies and technological innovations.
- Preliminary estimation results for the period 2002-2008 show how market prices are higher when the share of hydroelectricity is higher. Although result depends on controls.
However, given the cost of generation of these units, it provides generators with incentives to increase price-cost margins.
However, given the cost of generation of these units, it provides generators with incentives to increase price-cost margins.

Our results suggest that changes in the regulatory regime could affect bidding behavior.
However, given the cost of generation of these units, it provides generators with incentives to increase price-cost margins.

Our results suggest that changes in the regulatory regime could affect bidding behavior.

The period is characterized by significant changes in electricity market rules and regulation and some of the effects of these changes have been identified.
However, given the cost of generation of these units, it provides generators with incentives to increase price-cost margins.

Our results suggest that changes in the regulatory regime could affect bidding behavior.

The period is characterized by significant changes in electricity market rules and regulation and some of the effects of these changes have been identified.

Further research: improve model predictions and empirical insights.
Thanks for attention

Comments are welcome,...