Economic Potential for an Extension of Pump Storages in Norway

USAEE 2012, Austin

Tobias Frohmajer
Stephan Spiecker
Prof. Dr. Christoph Weber
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Introduction

• Rising shares of volatile electricity production from RES in Europe

• In the upcoming future, especially the potentials of off-shore-wind power in the north and baltic sea are scheduled to be developed

• In order to guarantee serving of the load also in times of lower RES-production, flexible production has to be provided to the grid
 – Flexibility due to extension of transmission capacities
 – Flexibility from flexible power plants (e.g. Natural Gas but also Hydro storages)
 – Flexibility from electricity storages (e.g. Pump storages)

• Linking the offshore-production with a north-sea grid to the storage potentials in Norway seem to be of great advantage
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Agenda

1. Introduction

2. Presentation of the models applied
 1. Overview
 2. E2M2s
 3. JMM

3. Scenario description

4. Results

5. Conclusions
Interaction of the models

![Diagram]

- **Input – data base**
- **European Electricity Market Model E2M2s**
 - Production capacities, seasonal usage of hydro storages; Type days: Electricity prices, electricity production and electricity exchange between countries
- **Joint Market Model JMM**
 - Hourly electricity prices, electricity production and electricity exchange between countries
- **Output – data base**
Basic considerations of the models (I)

- **Minimization of system costs**
 - Fundamental model
 - LP as well as MIP equations

- **Cost components taken into account**
 - fuel cost for electricity production and for start – ups
 - CO2 – costs for electricity production and for start – ups
 - other variable cost (e.g. Operation and maintenance, Shedding of RES,...)

- **Further restrictions:**
 - Electricity production from additional RES capacities (wind and solar)
 - Reserve requirements
 - Grid bottlenecks ...
Basic considerations of the models (II)

• Models include all European countries

• Including electricity and district heating markets

• Variable degree of detail:
 – whole of Europe or
 – European regions or/and
 – several regions within one country

• Possible stochastic modeling of load, wind, solar and water fluctuations
 - increasing share of solar and wind power production in European System
 - fluctuating production induces additional load flows
 - changes in hydrological conditions have also to be foreseen
E2M2s – Methodology

- Long term investment model based on Peak-Load-pricing approach

- Typically modelling a series of years

- Representation of each year in typical days and typical hours
 - In each quarter of the year
 - One work day and one weekend day
 - Each day is represented by 7 hours
 - Total of 56 representative hours

- Stochastic optimization using recombining trees
E2M2s – Results

- Optimal dispatch of production technologies
- Optimal investment in power plant capacities
- Optimal exchange of electricity
- Fundamental prices of electricity production
 → shadow prices of the demand restriction
- CO₂-prices
 → shadow prices of the emission bound
- Total system costs
JMM – methodology

• Short term unit dispatch model using a rolling planning approach
• Hourly Optimization of 2 markets:
 – day-ahead (unit dispatch up to 36 hours)
 – Intraday (redispatching the day-ahead results if new information available)
• Very detailed representation of technical restrictions (e.g. efficiency factors, availabilities, ramp rates, CHP unit types etc.)
• Detailed grid representation: NTC, PTDF and DCLF depiction is possible
• Recombining wait and see decision structure if stochastic is included
• Stochastic option for wind, sun, water and load is in place
• Developed within the EU project WILMAR in 2004
• Applied in the EU-projects EWIS and SUPWIND but also in several industry projects
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Basic considerations

- **Time horizon:** 2030 and 2050
- **Considered overall developments:** „Environmental friendly“
 - High Prices for fossil fuels
 - High CO2-prices (2030: 35 EUR/t CO2; 2050: 90 EUR/t CO2)
 - Excessive built-up of RES – capacities
 - Low development of electricity demand
- **Geographic scope:** Europe
 - incl. Norway, Switzerland and 2-3 offshore-nodes
 - excluding south-eastern Europe
 - Representation of Germany in 7 regions
 → In total 49 regions included
 → Presentation of results only for the mainly affected regions
Geographical Scope
Considered scenarios

- **Scenario 1:**
 - Moderate extension of the north sea grid
 - Only 2 offshore nodes
 - Less installed wind capacities connected to these nodes
 - More offshore-wind capacities connected bidirectional to the countries
 - No extension of pumping capacities in Norway
Considered scenarios

- **Scenario 2a:**
 - Extensive grid extension
 - 3 offshore nodes
 - More offshore-wind capacities connected to the offshore-nodes
 - Less installed wind capacities connected bidirectional to the countries
 - No extension of pumping capacities in Norway
Considered scenarios

- **Scenario 2b:**
 - Higher grid extension
 - 3 offshore nodes
 - More offshore-wind capacities connected to the offshore-nodes
 - Less installed wind capacities connected bidirectional to the countries
 - Installation of pump capacities in Norwegian water reservoirs (9GW)
 - The total considered capacity for Norwegian water reservoirs is much higher (27GW)
 - Only 1/3 of these capacities do fulfill the geographical preconditions which qualify them for an extension
 - In this case, only pumps would be applied (lower investment costs)
Considered scenarios

- **Scenario 2c:**
 - Higher grid extension
 - 3 offshore nodes
 - More offshore-wind capacities connected to the offshore-nodes
 - Less installed wind capacities connected bidirectional to the countries
 - Installation of pump & production capacities in Norwegian water reservoirs (9GW)
 - Same selection of water reservoirs as before
 - Locating the additional turbines in the existing structures (into the dams or caverns) that they are also able to produce (higher investment cost)
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Installed capacities for 2030

Installed capacities (GW)

- Nuclear
- Lignite
- Coal
- Natural gas
- Oil
- Pump storage
- Water power
- Biomass
- Waste
- Sun
- Wind onshore
- Wind offshore

Legend:
- Scen1
- Scen2a
- Scen2b
- Scen2c
Installed capacities in Scenario 1 for 2030

- nuclear
- lignite
- coal
- natural gas
- oil
- pump storage
- water power
- biomass
- sun
- waste
- Wind onshore
- Wind offshore
Installed capacities in Scenario 2a for 2030

- Nuclear
- Lignite
- Coal
- Natural gas
- Oil
- Pump storage
- Water power
- Biomass
- Sun
- Waste
- Renewable energy sources (wind onshore, wind offshore)
Production by fuel and region in Scenario 1 for 2030

Legend:
- SUN
- Biomass
- COAL
- FUELOIL
- GEOTHHEAT
- LIGNITE
- Misc
- MUNI_WASTE
- NAT_GAS
- NUCLEAR
- PUMP_HYD
- WATER
- WATER_RES
- WIND

Production (TWh)
Production by fuel and region in Scenario 2a for 2030
Comparison of average base prices – 2030

Base prices (EUR/MWh)

Scen1
Scen2a
Scen2b
Scen2c
Comparison of average base prices – 2030

• The high price level for France and Poland is set by the connected markets
 – In case of France by Spain and Italy
 – In case of Poland by Czech Republic and Hungary

• Strong dependency of the Nordic countries

• Scen 1 vs Scen 2a-c:
 – Leveling effect of additional transmission capacities still observable

• Scen 2a vs 2b vs 2c:
 – Only marginal differences between the scenarios indicate marginal effects
Comparison of average base prices – 2050
Comparison of average base prices – 2050

- Massive rises of price levels due to changes in fuel and CO2 prices as well as lowering effects due to rising share of RES
 - First effect especially observable in case of Poland
 - Second effect especially in case of Denmark

- Scen 1 vs Scen 2a-c:
 - The price levels are levelising due to the higher transmission capacities
 - The average base price level in countries linking to NO and SE decrease while the prices in NO and SE itself do rise
Production from water reservoirs – 2030 and 2050

Production (TWh)

<table>
<thead>
<tr>
<th>Year</th>
<th>Scenario</th>
<th>R_FR</th>
<th>R_NO</th>
<th>R_PL</th>
<th>R_SE</th>
<th>R_UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>Scen1</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>2030</td>
<td>Scen2a</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>2030</td>
<td>Scen2b</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>2030</td>
<td>Scen2c</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>2050</td>
<td>Scen1</td>
<td>50</td>
<td>70</td>
<td>50</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>2050</td>
<td>Scen2a</td>
<td>40</td>
<td>60</td>
<td>40</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>2050</td>
<td>Scen2b</td>
<td>20</td>
<td>40</td>
<td>20</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>2050</td>
<td>Scen2c</td>
<td>10</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>5</td>
</tr>
</tbody>
</table>
Production from water reservoirs – 2030 and 2050

• Grid extensions have especially an effect on the production of Norwegian water reservoirs

• Scen 1 vs Scen 2a-c:
 – In 2030, the grid extensions seem to lower the need from flexible production...
 – ... while in 2050 the need for flexible production triggered by even more installed capacities of RES seem to exceed the flexibility offered by grid extensions

• Scen 2a vs 2b vs 2c:
 – Additional pumping respectively production capacities are used

<table>
<thead>
<tr>
<th>Year</th>
<th>Scen1 (TWh)</th>
<th>Scen2a (TWh)</th>
<th>Scen2b (TWh)</th>
<th>Scen2c (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>85.8</td>
<td>83.7</td>
<td>90.1</td>
<td>91.6</td>
</tr>
<tr>
<td>2050</td>
<td>74.2</td>
<td>104.4</td>
<td>111.05</td>
<td>111.73</td>
</tr>
</tbody>
</table>
Pumping activities of mayor providers in Europe – 2030

- Scen1
- Scen2a
- Scen2b
- Scen2c
Pumping activities of mayor providers in Europe – 2050

- R_AT
- R_AT_Tirol
- R_AT_Vorarlberg
- R_BE
- R_CH
- R_DE
- R_FR
- R_IT
- R_LU_Vlinden
- R_NO
- R_PL
- R_UK

Legend:
- Scen1
- Scen2a
- Scen2b
- Scen2c
Pumping activities of mayor providers in Europe – 2030 and 2050

• Various influences cause different pumping behaviors of the mayor producers in Europe between the two base years
 – France: While in 2030, no mayor differences occur, the grid extensions cause a more drastic change in behavior

• Pumping activities in Norway
 – In both base years, pumping in Norway seems reasonable
 – There are no mayor differences between scenario 2b and 2c
 – This indicates, that the much higher investment costs in scenario 2c could not be justified
 – In general, the pumps have a total of about 1100/1200 full load hours for 2030/2050

<table>
<thead>
<tr>
<th>Year</th>
<th>Scen2b (TWh)</th>
<th>Scen2c (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>9.7</td>
<td>9.9</td>
</tr>
<tr>
<td>2050</td>
<td>10.8</td>
<td>11.1</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction

2. Presentation of the models applied

3. Scenario description

4. Results

5. Conclusions
Conclusions

- An extension of the north sea grid seams to have greater impact than the additional installation of pumping capacities or combined pumping and production capacities in Norwegian water reservoirs.

- The existing hydro storages are already very flexible – a shifting of the production to hours of high prices is already possible and by the extension of the grid even more applicable.

- Still, the additional capacities would be dispatched within expected values.

- Marginal differences between Scenario 2b and 2c indicate that the high investment needs for extending production capacities are not justified.
Thank you for your attention!

Any questions or remarks?

Contact:
Tobias Frohmajer
University of Duisburg-Essen
Chair for Management Sciences and Energy Economics
Universitätsstr. 12
45117 Essen, Germany
tobias.frohmajer@uni-due.de
Backup
Comparison of standard deviations of base prices – 2030

Diagram showing the comparison of standard deviations of base prices for different scenarios (Scen1, Scen2a, Scen2b, Scen2c) for various countries and regions (DK_E, DK_W, R_50HZA, R_BE, R_FR, R_NL, R_NO, R_PL, R_SE, R_TPA, R_UK).
Comparison of standard deviations of base prices – 2030

• Similar picture to the previously show base prices

• Scen 1 vs Scen 2a-c:
 – Due to the grid extension, the standard deviation of the base prices is levelizing

• Scen 2a vs 2b vs 2c:
 – With additional pumping or even production capacities, the standard deviation is lower
Comparison of standard deviations of base prices – 2050

The chart shows the comparison of standard deviations of base prices for various regions in 2050. The x-axis represents different regions, and the y-axis shows the standard deviation of base prices (EUR). The regions are color-coded as follows:

- Scen1 (Blue)
- Scen2a (Red)
- Scen2b (Green)
- Scen2c (Purple)

Each region has three bars representing different scenarios, illustrating the variability in base prices across these regions.
Wind shedding – 2030 and 2050