Arbitrage Strategies for Energy Storage

Olvar Bergland

School of Economics and Business
and
CERAD CoE
Norwegian University of Life Sciences
and
School of Economic Sciences
Washington State University

35th USAEE North American Conference
November 12–15, 2017, Houston, TX
Storage: Questions

- Why do we want/need energy storage
 - system services
 - shifting forward in time
- Is energy storage economically viable
 - expected revenue streams
 - risk management
- Are there market design/institutional obstructions
 - market failures
 - fossil vs digital world
Storage: Time Shifts

- Arbitrage
 - buy cheap, sell dear

- Time scale
 - years
 - months
 - week(s)
 - day(s)
 - hour(s)
 - minute(s)
Motivation

- Integrating stored/pumped hydro w/wind
- Integrating batteries w/wind and/or solar
 - reliability
 - risk-management
 - proconsumers
- Batteries are cool — but (almost) useless and a waste of money
Outline

1. Background
2. Arbitrage Strategies
3. Flexibility and Swing Options
4. Conclusion
Outline

1. Background
2. Arbitrage Strategies
3. Flexibility and Swing Options
4. Conclusion
Price Variability

- Price variability is the key
- Seasonal/diurnal patterns
- Stochastic component
- Stochastic production
Prices in Oslo and Sweden (2010/17)

Spot Prices in NO and SE

Spot Price (EUR/MWh)

Hour of the week
Prices in Denmark

Distribution of Hourly Spot Prices

Spot Price (EUR/MWh)

Hour

1 3 6 9 12 15 18 21 24
Prices in Denmark (seasonally adjusted)
Arbitrage in Bidding Markets

- Conceptual framework
 - Selling/buying one unit in each period
 - Offering buy/sell bids
- Storage $X_t \in \{0, 1, \ldots, X_{\text{max}}\}$
- Buy bid $0 \leq b_t$
- Sell bid $s_t \leq \bar{p}$.
- Beliefs/expectations about bid distribution $F(p)$
Stochastic Dynamic Programming

\[V(X_t) = \max_{b_t, s_t} \left(-F_t(b_t) \int_0^{b_t} p dF_t(p) + (1 - F_t(s_t)) \int_{s_t}^{\bar{p}} p dF_t(p) \right) \]

\[+ \beta \left(F_t(b_t) V(X_{t+1}) + (F_t(s_t) - F_t(b_t)) V(X_t) + (1 - F_t(s_t)) V(X_{t-1}) \right) \] \hspace{1cm} (1)

- Solve numerically (Judd)
 - Infinite time horizon
 - Optimal bidding strategy
 - Value function \(V(X) \)
- Repeated single period
- Repeated sequential 24-hour period
Day-Ahead Market Auction

- Need to bid for each hour simultaneously
- Cannot condition bids sequentially
- How much to bid: b_{ht} and s_{ht}
- Which hours to participate $\delta^b_{ht}, \delta^s_{ht} \in \{0, 1\}$

$$V(X_t) = \max_{b_{ht}, s_{ht}, \delta^b_{ht}, \delta^s_{ht}} \sum_h \left(-\delta^b_{ht} F_{ht}(b_{ht}) \int_0^{b_{ht}} p dF_{ht}(p) + \delta^s_{ht} \cdots \right)$$

subject to $\sum_h \delta^s_{ht} \leq X_t$ and $X_t + \sum_h \delta^b_{ht} \leq X_{max}$.
Feasible Method

- SDP is a feasible method
 - easy for day ahead auction
 - arbitrage across hours/days

- Bid/price distribution
 - forecast (systematic component)
 - bid stack

- Need to select hours
Arbitrage in Denmark

Expected Utilization (6 unit storage)

Hour of the day
Market Design

- Basic version of day-ahead market
 - submit bids before gate closure
 - need excess capacity
 - timing and frequency of closure

- Basic version of intra-day market
 - continuous trading
 - market clearing at specific times

- Real I-SAM design
 - very flexible
 - read the manual (!)
Outline

1. Background
2. Arbitrage Strategies
3. Flexibility and Swing Options
4. Conclusion
Increased Flexibility

- Increase demand/supply flexibility
- Buy/sell at the right time
- Swing options for buy/sell units
- Options called by market operator when desired
- Energy storage can offer such options
- The SDP model for pricing such contracts
Trading Exotic Options

- I-SAM and the EUPHEMIA algorithm
 - market clearing and market coupling
 - allows great flexibility in orders

- Complex orders
- Block orders
- Flexible hourly orders
 - sell/buy x units at price s
 - flexible wrt which hour
 - allocated to the best period
 - paid market price (not bid price)
Swing Arbitrage in Denmark

Expected Daily Arbitrage Returns)

Year

0 10 20 30 40 50
Outline

1. Background
2. Arbitrage Strategies
3. Flexibility and Swing Options
4. Conclusion
Conclusions

- Arbitrage value may justify storage
- SDP modeling of bidding behavior in auction markets
- Market design in place for (commercial) storage
 - arbitrage across days/hours
 - swing options for arbitrage and flexibility
 - gate closure times and frequency
- Detailed case studies next...
Thank you for your attention.

olvar.bergland@wsu.edu
olvar.bergland@nmbu.no
http://cerad.nmbu.no