Impacts of Oil Price Shocks on the U.S. Economy

A Meta-Analysis of Oil Price Elasticity of GDP for Net Oil-Importing Economies

Gbadebo Oladosu
Paul Leiby
David Bowman
Rocio Uria-Martinez
Megan Johnson
Oak Ridge National Laboratory

Presented at the 35th USAEE/IAEE North American Conference
Houston, TX, USA
November 14, 2017
Impacts of oil price shocks on the US economy is a crucial policy concern but estimates vary widely

• Policymakers require estimates of the impacts of oil price shocks
 • ...to quantify the economic costs of these shocks
 • ...and evaluate the benefits of policy response options
 • Economic impacts can be summarized using “the oil price elasticity of GDP”

• Estimates of the “GDP elasticity” in the literature vary widely
 • ...due to fundamental and methodological factors, including:
 • Drivers of shocks (supply or demand)
 • Size, duration and speed of shocks
 • State of the economy
 • Modeling approach
 • Petroleum dependence
 • etc.

• Study aim is to explore sources of variations in GDP elasticities
 • ...and produce combined mean and confidence intervals for policy needs
Meta-analysis is used to synthesis GDP elasticity estimates and explore sources of variation

- Meta-analysis can be described as quantitative literature review
 - ...for synthesizing parameter estimates across multiple studies
 - 3 meta-analysis approaches for synthesizing varying estimates across studies
 - Fixed effects model ➔ difference in sampling information
 - Random effects model ➔ plus randomly distributed heterogeneity
 - Meta-regression analysis (MRA) ➔ plus systematic sources of heterogeneity

- MRA is the most common approach in the economic literature
 - Used in this study to explore role of different factors in GDP elasticities
 - Can be used even when standard errors are unavailable

- Literature search and data collection
 - Focuses on net oil-importing economies and studies since 2000
 - ~150 papers initially identified as relevant
 - 19 papers found to have accessible, quantitative information
 - Extracted about 2000 point estimates; about half are mean estimates
 - Collected information on study characteristics and other data
Studies come from energy-economy journals and other sources

- **Study sources include:**
 - Energy Economics, Energy Policy, Economic Modeling, European Central Bank, etc.

- **Model type often important**
 - Focus here is on broad model classes
 - ...most are VAR-type models

- **Studies mostly use quarterly data**
 - ...a few are monthly or annual

SEEC = Single equation econometric
VAR-type = Vector autoregression-type
MACRO = Macro-econometric
CGE = Computable general equilibrium
DSGE = Dynamic stochastic general equilibrium
GDP elasticity estimates include many net oil importing economies and span a wide range

Summary of GDP Elasticity Estimates from the Literature

- **US & Europe account for ~90% of data**
 - Overall range of the data is -0.174 to 0.090
 - ...SR mean is -0.017 range: -0.166 to +0.030
 - US range is: -0.124 to +0.017
 - ...SR mean is -0.019; range: -0.124 to +0.016

- **Time profile of regional impacts vary**
 - ...and important for policy analysis
MRA variables aimed at capturing fundamental and methodological sources of variation

- Meta-regression equation estimated (with/without VR_i term)

 $e_i = \beta_0 + \beta_1 VR_i + \sum_k \alpha_k X_{i,k} + \epsilon_i$

 - $e_i = \text{GDP elasticity estimates}; X_{i,k} = \text{determinant factors};$
 - $VR_i = \text{variance of estimates for (quadratic) publication bias term}$*

- Continuous variables

 - **Size of shock** (rate of price change, **centered at +5%**)
 - **Number of quarters after shock to account for time profile** (**centered at 1**)
 - **Normalized average quarterly elasticity** for correlation among estimates
 - **Energy-economy variables**: Real GDP per capita (**centered at $40,000$**); Petroleum (use and imports) to energy use ratios (**centered at 0.4 and 0.2**)

- Dummy variables

 - **Regions** (**US**, Europe, Japan, China, etc.)
 - **Model class** (**SEEC**, CGE, DSGE, MACRO, VAR-type)
 - **Years covered by data** in 5-year intervals from 1970-2015 (**1981-1985**)
 - **Price type** (Linear = 1)
 - **Supply shock/variable** (Yes = 1)
 - **Demand shock/variable** (Yes = 1)

- Bolded values represent the **Baseline**

Diagnostics show there are issues with OLS estimates but PRM* is effective

- OLS estimation and diagnostics were performed
- Variance inflation factors (VIF) used to check multi-collinearity
 - Almost all dummy variables have high VIF values
 - Energy-economic variables also have high VIF values
 - Requires special attention because it inflates the size of coefficients
- Partial Robust M-Regression (PRM) estimation combines:
 - PLS (partial least squares) to address multicollinearity and
 - ...M-Regression which addresses outliers, leverage and heteroscedasticity
- Normal Q-Q Plots
 - PRM has close to normal distribution of residuals
 - Publication bias variable (VR_i) not useful in this MRA

PRM estimates are generally smaller in magnitude than OLS due to correction for multi-collinearity

- Coefficients are generally smaller in magnitude for PRM than OLS
 - Shows that PRM is effective in dealing with multi-collinearity

- Coefficient for size of shock is positive and significant
 - Gross economic impacts increase at a decreasing rate with size of shock

- Energy-economic variables are negative but small in magnitude
 - Data for these variables are cross-sectional in nature
 - Needs to be interpreted in the context of meta-analysis

Note: * and ** indicate significance at the 10% and 5% levels for PRM estimates
Regions, except China and India, are less sensitive to oil price shocks than the US all else same

- Positive and significant estimates for Europe, Australia, Japan
 - Magnitudes vary from +0.0008 to + 0.0194

- China is more sensitive than the United States
 - India is also slightly more sensitive but not significantly
Price, supply and demand coefficients match expectations; model type coefficients vary

- Linear price variable \Rightarrow more positive GDP elasticities
 - Matches use of non-linear price variables to isolate shocks

- Isolating supply or demand shocks \Rightarrow more negative elasticities
 - Marginal effect of a demand-driven price shock would be negative net of the source of the shock

- VAR-type model \Rightarrow more positive, MACRO \Rightarrow negative GDP elasticities than SEEC
Coefficients for data years capture notion that oil price shocks impacts have declined since the 1970s

- Years covered by data variable reflect start/end locations and span of data for GDP elasticity estimates
- Only coefficient for 1970-1975 is negative, significant and sizeable
 - 1991 to 1995 is also negative but small and insignificant
- Other years are positive and generally significant
Simulation of final MRA model produces mean and confidence intervals useful for policy analysis

- Monte Carlo simulation
 - 250,000 replications
- Mean estimate negative
 - \(~-0.015\) in 1st quarter
 - \(~-0.024\) by 8th quarter
- Over all 12 quarters
 - 68\% CI: -0.038 to -0.001
 - 95\% CI: -0.051 to +0.012

Variable Settings for Monte Carlo Distribution

<table>
<thead>
<tr>
<th>Uniform random distribution for:</th>
<th>Other variables have fixed values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size of shock (+1% to +100% in 10 increment)</td>
<td>Normalized average quarterly elasticity (actual values by quarter)</td>
</tr>
<tr>
<td>Number of quarters after shock (1-12 quarters)</td>
<td>2005 Real GDP per capita ($44,00)</td>
</tr>
<tr>
<td>Model type (for model agnosticism)</td>
<td>2005 Petroleum-energy use ratio (0.51)</td>
</tr>
<tr>
<td>Price, supply and demand (equal weighting of 1/0 values)</td>
<td>2005 Net petroleum import-energy use ratio (0.15)</td>
</tr>
<tr>
<td>Normal random distribution</td>
<td>Region dummy (baseline: United States; others set to zero)</td>
</tr>
<tr>
<td>Multivariate for MRA Coefficients</td>
<td>Years covered by the data (all set to 1 for estimate based on 1970-2015 data)</td>
</tr>
<tr>
<td>Normal random distribution of residuals</td>
<td></td>
</tr>
</tbody>
</table>
Concluding remarks

• Policy analysis of oil markets requires estimates of the economic impacts of oil price shocks, but these cover a wide range

• Meta-regression model
 • Found significant roles for fundamental and methodological factors
 • Price type, Supply and Demand shocks; Model type; Regions; Years of data
 • Monte Carlo simulation generates values for policy analysis
 • US estimate (4 quarters after a shock): -0.020 (68% CI: -0.035 to -0.006)

• Caveats and future efforts
 • Meta-analysis data and results depend on available studies
 • Should be used with variable values not too far from estimation levels
 • Variables are not direct measures, but often composite in nature
 • Coefficients cannot be interpreted in isolation
 • Future efforts will continue to improve the analysis and add newer studies
ACKNOWLEDGMENTS
This material is based upon work supported by the US Department of Energy under the Strategic Petroleum Reserves Office, and performed at Oak Ridge National Laboratory under contract number DE-AC05-00OR22725. The views in this paper are those of the authors, who are also responsible for any errors or omissions.

Copyright Notice
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC0500OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-accessplan).
Supplemental Slides
Illustration of the Years Covered by Data Variable

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimate A</td>
<td>1</td>
</tr>
<tr>
<td>Estimate B</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate C</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate D</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Asymmetry of funnel plot could imply publication bias or heterogeneity of the GDP elasticity data

- Funnel plots are graphs of mean estimates vs. standard errors
 - Used in meta-analysis to identify potential publication bias
 - ...strictly applicable to fixed effects model of the data
 - ...in other cases, it could indicate heterogeneity in the data

- Pseudo-standard errors for GDP elasticities were calculated
 - ...using available confidence bounds
 - ...imputed for other estimates

Funnel plots of mean elasticities vs. pseudo-standard errors
Visual exploration of averages over groups of potential determinants as background for MRA (1)

- Model class graphs suggest average is generally negative
 - SEEC model class has the largest magnitude
 - DSGE model class has the smallest magnitude

- Non-linear oil price variable often used to isolate shocks in studies
 - Non-linear examples: 1) only positive or negative shocks; 2) Net oil price index
 - Average GDP elasticity estimates are similar until the 8^{th} quarter
 - …non-linear has larger magnitude after 8 quarters
Visual exploration of averages over groups of potential determinants as background for MRA (2)

- **Supply variable or shock**
 - ...suggests that separating drivers of shocks may be important to the MRA
 - ...larger in magnitude when isolating supply shocks or variables

- **Demand variable or shock**
 - ...larger in magnitude when demand shocks or variables are not isolated
F-tests used to check the contribution of different groups variables in the estimation

- All variable groups, except number of quarters under the PRM estimator contributed significantly to the MRA estimates

Table 6. Partial F-tests for coefficient groups in the full meta-regression model

<table>
<thead>
<tr>
<th>Test Description</th>
<th>PRM (Eq. 6a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F(Size of shock)</td>
<td>34.43*</td>
</tr>
<tr>
<td>F(Number of quarters after shock)</td>
<td>-74.11</td>
</tr>
<tr>
<td>F(Normalized average quarterly elasticity)</td>
<td>11.55*</td>
</tr>
<tr>
<td>F(Energy-economy variables)</td>
<td>9.76*</td>
</tr>
<tr>
<td>F(Region dummy)</td>
<td>7.2*</td>
</tr>
<tr>
<td>F(Model class dummy)</td>
<td>10.44*</td>
</tr>
<tr>
<td>F(Price type dummy)</td>
<td>10.46*</td>
</tr>
<tr>
<td>F(Supply or demand shock/variable dummy)</td>
<td>32.18*</td>
</tr>
<tr>
<td>F(Years covered by data dummy)</td>
<td>41.02*</td>
</tr>
</tbody>
</table>

*Means significance at the 10% level or below